Go 1.19.3 interface原理简析

news2025/7/10 18:30:52

interface 接口,分为有方法签名的接口和空接口

interface{fn()…} 有方法签名的接口,底层运行时结构 iface

在这里插入图片描述

iface

src/runtime/runtime2.go

type iface struct {
	tab  *itab          // 接口类型itab, i-table的缩写
	data unsafe.Pointer // 接口值指针
}

itab

// layout of Itab known to compilers
// allocated in non-garbage-collected memory
// Needs to be in sync with
// ../cmd/compile/internal/reflectdata/reflect.go:/^func.WriteTabs.
type itab struct {
	inter *interfacetype // 接口类型
	_type *_type         // 实体类型,具体的某个类型
	hash  uint32 // copy of _type.hash. Used for type switches. 哈希值
	_     [4]byte  // 内存对齐占位
	fun   [1]uintptr // variable sized. fun[0]==0 means _type does not implement inter. 第0个函数指针,其后保存一系列的函数入口
}

interfacetype

src/runtime/type.go

type interfacetype struct {
	typ     _type    // 元类型,所有类型几乎都从_type开始封装,其可以是结构体等
	pkgpath name     // 包路径
	mhdr    []imethod// 对函数名与函数类型封装的列表,该列表也就是接口拥有的方法列表
}

_type

src/runtime/type.go

// Needs to be in sync with ../cmd/link/internal/ld/decodesym.go:/^func.commonsize,
// ../cmd/compile/internal/reflectdata/reflect.go:/^func.dcommontype and
// ../reflect/type.go:/^type.rtype.
// ../internal/reflectlite/type.go:/^type.rtype.
type _type struct {
	size       uintptr
	ptrdata    uintptr // size of memory prefix holding all pointers
	hash       uint32
	tflag      tflag
	align      uint8
	fieldAlign uint8
	kind       uint8
	// function for comparing objects of this type
	// (ptr to object A, ptr to object B) -> ==?
	equal func(unsafe.Pointer, unsafe.Pointer) bool
	// gcdata stores the GC type data for the garbage collector.
	// If the KindGCProg bit is set in kind, gcdata is a GC program.
	// Otherwise it is a ptrmask bitmap. See mbitmap.go for details.
	gcdata    *byte
	str       nameOff
	ptrToThis typeOff
}

name

src/runtime/type.go

// name is an encoded type name with optional extra data.
// See reflect/type.go for details.
type name struct {
	bytes *byte
}

imethod

src/runtime/type.go

type imethod struct {
	name nameOff // 方法名的偏移
	ityp typeOff // 方法类型的偏移
}

nameOff, typeOff, textOff

src/runtime/type.go

type nameOff int32
type typeOff int32
type textOff int32

src/runtime/type.go
resolveNameOff和resolveTypeOff方法可以定位到方法的名称和类型

func resolveNameOff(ptrInModule unsafe.Pointer, off nameOff) name {
	if off == 0 {
		return name{}
	}
	base := uintptr(ptrInModule)
	for md := &firstmoduledata; md != nil; md = md.next {
		if base >= md.types && base < md.etypes {
			res := md.types + uintptr(off)
			if res > md.etypes {
				println("runtime: nameOff", hex(off), "out of range", hex(md.types), "-", hex(md.etypes))
				throw("runtime: name offset out of range")
			}
			return name{(*byte)(unsafe.Pointer(res))}
		}
	}

	// No module found. see if it is a run time name.
	reflectOffsLock()
	res, found := reflectOffs.m[int32(off)]
	reflectOffsUnlock()
	if !found {
		println("runtime: nameOff", hex(off), "base", hex(base), "not in ranges:")
		for next := &firstmoduledata; next != nil; next = next.next {
			println("\ttypes", hex(next.types), "etypes", hex(next.etypes))
		}
		throw("runtime: name offset base pointer out of range")
	}
	return name{(*byte)(res)}
}

func (t *_type) nameOff(off nameOff) name {
	return resolveNameOff(unsafe.Pointer(t), off)
}

func resolveTypeOff(ptrInModule unsafe.Pointer, off typeOff) *_type {
	if off == 0 || off == -1 {
		// -1 is the sentinel value for unreachable code.
		// See cmd/link/internal/ld/data.go:relocsym.
		return nil
	}
	base := uintptr(ptrInModule)
	var md *moduledata
	for next := &firstmoduledata; next != nil; next = next.next {
		if base >= next.types && base < next.etypes {
			md = next
			break
		}
	}
	if md == nil {
		reflectOffsLock()
		res := reflectOffs.m[int32(off)]
		reflectOffsUnlock()
		if res == nil {
			println("runtime: typeOff", hex(off), "base", hex(base), "not in ranges:")
			for next := &firstmoduledata; next != nil; next = next.next {
				println("\ttypes", hex(next.types), "etypes", hex(next.etypes))
			}
			throw("runtime: type offset base pointer out of range")
		}
		return (*_type)(res)
	}
	if t := md.typemap[off]; t != nil {
		return t
	}
	res := md.types + uintptr(off)
	if res > md.etypes {
		println("runtime: typeOff", hex(off), "out of range", hex(md.types), "-", hex(md.etypes))
		throw("runtime: type offset out of range")
	}
	return (*_type)(unsafe.Pointer(res))
}

func (t *_type) typeOff(off typeOff) *_type {
	return resolveTypeOff(unsafe.Pointer(t), off)
}

interface{} 空接口,底层运行时结构 eface

在这里插入图片描述

eface

type eface struct {
	_type *_type         //接口类型,类型同上述类型
	data  unsafe.Pointer //接口值
}

接口原理

src/runtime/iface.go

const itabInitSize = 512

var (
	itabLock      mutex                               // lock for accessing itab table
	itabTable     = &itabTableInit                    // pointer to current table
	itabTableInit = itabTableType{size: itabInitSize} // starter table
)

// Note: change the formula in the mallocgc call in itabAdd if you change these fields.
type itabTableType struct {
	size    uintptr             // length of entries array. Always a power of 2.
	count   uintptr             // current number of filled entries.
	entries [itabInitSize]*itab // really [size] large
}

带有方法签名的接口,其底层维护了一个全局的itabTable变量,该变量中保存了*itab哈希表。接口的动态特性由其itab类型决定。Go语言中只要实现一个接口中的所有方法,那么即隐式的实现了该接口。

如何确定一个类型是否实现了某个接口呢?在Go的编译时,编译器会根据需要对接口中的方法按规则排序,同时对类型绑定的方法也按规则排序,此时只要很少的时间开销,就可以根据方法名和方法类型来确定某个类型是否实现了某个接口。

itabHashFunc 通过异或计算hash值

func itabHashFunc(inter *interfacetype, typ *_type) uintptr {
	// compiler has provided some good hash codes for us.
	return uintptr(inter.typ.hash ^ typ.hash)
}

getitab 获取itab指针

func getitab(inter *interfacetype, typ *_type, canfail bool) *itab {
	if len(inter.mhdr) == 0 {  //没有方法的摘要
		throw("internal error - misuse of itab")
	}

	// easy case
	if typ.tflag&tflagUncommon == 0 {
		if canfail {
			return nil
		}
		name := inter.typ.nameOff(inter.mhdr[0].name)
		panic(&TypeAssertionError{nil, typ, &inter.typ, name.name()})
	}

	var m *itab

	// First, look in the existing table to see if we can find the itab we need.
	// This is by far the most common case, so do it without locks.
	// Use atomic to ensure we see any previous writes done by the thread
	// that updates the itabTable field (with atomic.Storep in itabAdd).
	t := (*itabTableType)(atomic.Loadp(unsafe.Pointer(&itabTable)))
	if m = t.find(inter, typ); m != nil { //寻找itab,找到则直接跳转finish
		goto finish
	}

	// Not found.  Grab the lock and try again. 没找到则上锁再找一遍
	lock(&itabLock) //上锁
	if m = itabTable.find(inter, typ); m != nil {
		unlock(&itabLock)
		goto finish
	}

	// Entry doesn't exist yet. Make a new entry & add it.  若仍未找到,则创建一个*itab,并加入全局变量
	m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(inter.mhdr)-1)*goarch.PtrSize, 0, &memstats.other_sys))
	m.inter = inter
	m._type = typ
	// The hash is used in type switches. However, compiler statically generates itab's
	// for all interface/type pairs used in switches (which are added to itabTable
	// in itabsinit). The dynamically-generated itab's never participate in type switches,
	// and thus the hash is irrelevant.
	// Note: m.hash is _not_ the hash used for the runtime itabTable hash table.
	m.hash = 0
	m.init() //初始化操作
	itabAdd(m) //加入全局变量
	unlock(&itabLock) //解锁
finish:
	if m.fun[0] != 0 { //方法有效
		return m
	}
	if canfail {
		return nil
	}
	// this can only happen if the conversion
	// was already done once using the , ok form
	// and we have a cached negative result.
	// The cached result doesn't record which
	// interface function was missing, so initialize
	// the itab again to get the missing function name.
	panic(&TypeAssertionError{concrete: typ, asserted: &inter.typ, missingMethod: m.init()})
}

find 根据给定类型寻找*itab

// find finds the given interface/type pair in t.
// Returns nil if the given interface/type pair isn't present.
func (t *itabTableType) find(inter *interfacetype, typ *_type) *itab {
	// Implemented using quadratic probing.
	// Probe sequence is h(i) = h0 + i*(i+1)/2 mod 2^k.
	// We're guaranteed to hit all table entries using this probe sequence.
	mask := t.size - 1 //掩码,防止越界
	h := itabHashFunc(inter, typ) & mask //计算hash值
	for i := uintptr(1); ; i++ { //在全局变量的hash表中,线性查找
		p := (**itab)(add(unsafe.Pointer(&t.entries), h*goarch.PtrSize)) //获取hash中的地址
		// Use atomic read here so if we see m != nil, we also see
		// the initializations of the fields of m.
		// m := *p
		m := (*itab)(atomic.Loadp(unsafe.Pointer(p))) //加载地址的内容
		if m == nil { //未找到,返回nil
			return nil
		}
		if m.inter == inter && m._type == typ { //找到了
			return m //返回m
		}
		h += i    // 线性递增
		h &= mask // 重新计算位置,防止越界
	}
}

itabAdd 向全局变量的hash表中加入*itab

// itabAdd adds the given itab to the itab hash table.
// itabLock must be held.
func itabAdd(m *itab) {
	// Bugs can lead to calling this while mallocing is set,
	// typically because this is called while panicing.
	// Crash reliably, rather than only when we need to grow
	// the hash table.
	if getg().m.mallocing != 0 {
		throw("malloc deadlock")
	}

	t := itabTable //全局table
	if t.count >= 3*(t.size/4) { // 75% load factor  hash表中元素超过75%时,再次添加元素会引发扩容,大概二倍扩容
		// Grow hash table.
		// t2 = new(itabTableType) + some additional entries
		// We lie and tell malloc we want pointer-free memory because
		// all the pointed-to values are not in the heap.
		t2 := (*itabTableType)(mallocgc((2+2*t.size)*goarch.PtrSize, nil, true)) //分配容量
		t2.size = t.size * 2 //size扩大到2倍

		// Copy over entries. 复制之前的成员到新地址
		// Note: while copying, other threads may look for an itab and
		// fail to find it. That's ok, they will then try to get the itab lock
		// and as a consequence wait until this copying is complete.
		iterate_itabs(t2.add)
		if t2.count != t.count {
			throw("mismatched count during itab table copy")
		}
		// Publish new hash table. Use an atomic write: see comment in getitab.
		atomicstorep(unsafe.Pointer(&itabTable), unsafe.Pointer(t2))
		// Adopt the new table as our own.
		t = itabTable
		// Note: the old table can be GC'ed here.
	}
	t.add(m) //执行添加逻辑
}

add 向全局hash表中添加*itab的逻辑

// add adds the given itab to itab table t.
// itabLock must be held.
func (t *itabTableType) add(m *itab) {
	// See comment in find about the probe sequence.
	// Insert new itab in the first empty spot in the probe sequence.
	mask := t.size - 1 //计算掩码
	h := itabHashFunc(m.inter, m._type) & mask //计算hash值
	for i := uintptr(1); ; i++ {
		p := (**itab)(add(unsafe.Pointer(&t.entries), h*goarch.PtrSize)) //计算地址
		m2 := *p
		if m2 == m { //全局hash表中已经由*itab,则直接返回,不做处理
			// A given itab may be used in more than one module
			// and thanks to the way global symbol resolution works, the
			// pointed-to itab may already have been inserted into the
			// global 'hash'.
			return
		}
		if m2 == nil { //当前地址可用,则插入,并更新count,返回
			// Use atomic write here so if a reader sees m, it also
			// sees the correctly initialized fields of m.
			// NoWB is ok because m is not in heap memory.
			// *p = m
			atomic.StorepNoWB(unsafe.Pointer(p), unsafe.Pointer(m))
			t.count++
			return
		}
		h += i //线性查找下一个位置
		h &= mask //防止越界
	}
}

init *itab的初始化,init使用所有的方法指针填充m.fun数组,若该类型没有实现接口,则将m.fun[0]设置为0,并返回缺少的接口函数的名称。

// init fills in the m.fun array with all the code pointers for
// the m.inter/m._type pair. If the type does not implement the interface,
// it sets m.fun[0] to 0 and returns the name of an interface function that is missing.
// It is ok to call this multiple times on the same m, even concurrently.
func (m *itab) init() string {
	inter := m.inter
	typ := m._type
	x := typ.uncommon()

	// both inter and typ have method sorted by name,
	// and interface names are unique,
	// so can iterate over both in lock step;
	// the loop is O(ni+nt) not O(ni*nt).
	ni := len(inter.mhdr)
	nt := int(x.mcount)
	xmhdr := (*[1 << 16]method)(add(unsafe.Pointer(x), uintptr(x.moff)))[:nt:nt]
	j := 0
	methods := (*[1 << 16]unsafe.Pointer)(unsafe.Pointer(&m.fun[0]))[:ni:ni]
	var fun0 unsafe.Pointer
imethods:
	for k := 0; k < ni; k++ {
		i := &inter.mhdr[k]
		itype := inter.typ.typeOff(i.ityp)
		name := inter.typ.nameOff(i.name)
		iname := name.name()
		ipkg := name.pkgPath()
		if ipkg == "" {
			ipkg = inter.pkgpath.name()
		}
		for ; j < nt; j++ {
			t := &xmhdr[j]
			tname := typ.nameOff(t.name)
			if typ.typeOff(t.mtyp) == itype && tname.name() == iname {
				pkgPath := tname.pkgPath()
				if pkgPath == "" {
					pkgPath = typ.nameOff(x.pkgpath).name()
				}
				if tname.isExported() || pkgPath == ipkg {
					if m != nil {
						ifn := typ.textOff(t.ifn)
						if k == 0 {
							fun0 = ifn // we'll set m.fun[0] at the end
						} else {
							methods[k] = ifn
						}
					}
					continue imethods
				}
			}
		}
		// didn't find method
		m.fun[0] = 0
		return iname
	}
	m.fun[0] = uintptr(fun0)
	return ""
}

itabsinit 初始化itabs

func itabsinit() {
	lockInit(&itabLock, lockRankItab) //初始化锁
	lock(&itabLock) //上锁
	for _, md := range activeModules() {
		for _, i := range md.itablinks {
			itabAdd(i) //加入itab全局hash表
		}
	}
	unlock(&itabLock)
}

panic相关

// panicdottypeE is called when doing an e.(T) conversion and the conversion fails.
// have = the dynamic type we have.
// want = the static type we're trying to convert to.
// iface = the static type we're converting from.
func panicdottypeE(have, want, iface *_type) {
	panic(&TypeAssertionError{iface, have, want, ""})
}

// panicdottypeI is called when doing an i.(T) conversion and the conversion fails.
// Same args as panicdottypeE, but "have" is the dynamic itab we have.
func panicdottypeI(have *itab, want, iface *_type) {
	var t *_type
	if have != nil {
		t = have._type
	}
	panicdottypeE(t, want, iface)
}

// panicnildottype is called when doing a i.(T) conversion and the interface i is nil.
// want = the static type we're trying to convert to.
func panicnildottype(want *_type) {
	panic(&TypeAssertionError{nil, nil, want, ""})
	// TODO: Add the static type we're converting from as well.
	// It might generate a better error message.
	// Just to match other nil conversion errors, we don't for now.
}

常用数据类型初始化

// The specialized convTx routines need a type descriptor to use when calling mallocgc.
// We don't need the type to be exact, just to have the correct size, alignment, and pointer-ness.
// However, when debugging, it'd be nice to have some indication in mallocgc where the types came from,
// so we use named types here.
// We then construct interface values of these types,
// and then extract the type word to use as needed.
type (
	uint16InterfacePtr uint16
	uint32InterfacePtr uint32
	uint64InterfacePtr uint64
	stringInterfacePtr string
	sliceInterfacePtr  []byte
)

var (
	uint16Eface any = uint16InterfacePtr(0)
	uint32Eface any = uint32InterfacePtr(0)
	uint64Eface any = uint64InterfacePtr(0)
	stringEface any = stringInterfacePtr("")
	sliceEface  any = sliceInterfacePtr(nil)

	uint16Type *_type = efaceOf(&uint16Eface)._type
	uint32Type *_type = efaceOf(&uint32Eface)._type
	uint64Type *_type = efaceOf(&uint64Eface)._type
	stringType *_type = efaceOf(&stringEface)._type
	sliceType  *_type = efaceOf(&sliceEface)._type
)

efaceOf 类型转换

func efaceOf(ep *any) *eface {
	return (*eface)(unsafe.Pointer(ep))
}

类型转换与类型断言

// The conv and assert functions below do very similar things.
// The convXXX functions are guaranteed by the compiler to succeed.
// The assertXXX functions may fail (either panicking or returning false,
// depending on whether they are 1-result or 2-result).
// The convXXX functions succeed on a nil input, whereas the assertXXX
// functions fail on a nil input.

// convT converts a value of type t, which is pointed to by v, to a pointer that can
// be used as the second word of an interface value.
func convT(t *_type, v unsafe.Pointer) unsafe.Pointer {
	if raceenabled {
		raceReadObjectPC(t, v, getcallerpc(), abi.FuncPCABIInternal(convT))
	}
	if msanenabled {
		msanread(v, t.size)
	}
	if asanenabled {
		asanread(v, t.size)
	}
	x := mallocgc(t.size, t, true)
	typedmemmove(t, x, v)
	return x
}
func convTnoptr(t *_type, v unsafe.Pointer) unsafe.Pointer {
	// TODO: maybe take size instead of type?
	if raceenabled {
		raceReadObjectPC(t, v, getcallerpc(), abi.FuncPCABIInternal(convTnoptr))
	}
	if msanenabled {
		msanread(v, t.size)
	}
	if asanenabled {
		asanread(v, t.size)
	}

	x := mallocgc(t.size, t, false)
	memmove(x, v, t.size)
	return x
}

func convT16(val uint16) (x unsafe.Pointer) {
	if val < uint16(len(staticuint64s)) {
		x = unsafe.Pointer(&staticuint64s[val])
		if goarch.BigEndian {
			x = add(x, 6)
		}
	} else {
		x = mallocgc(2, uint16Type, false)
		*(*uint16)(x) = val
	}
	return
}

func convT32(val uint32) (x unsafe.Pointer) {
	if val < uint32(len(staticuint64s)) {
		x = unsafe.Pointer(&staticuint64s[val])
		if goarch.BigEndian {
			x = add(x, 4)
		}
	} else {
		x = mallocgc(4, uint32Type, false)
		*(*uint32)(x) = val
	}
	return
}

func convT64(val uint64) (x unsafe.Pointer) {
	if val < uint64(len(staticuint64s)) {
		x = unsafe.Pointer(&staticuint64s[val])
	} else {
		x = mallocgc(8, uint64Type, false)
		*(*uint64)(x) = val
	}
	return
}

func convTstring(val string) (x unsafe.Pointer) {
	if val == "" {
		x = unsafe.Pointer(&zeroVal[0])
	} else {
		x = mallocgc(unsafe.Sizeof(val), stringType, true)
		*(*string)(x) = val
	}
	return
}

func convTslice(val []byte) (x unsafe.Pointer) {
	// Note: this must work for any element type, not just byte.
	if (*slice)(unsafe.Pointer(&val)).array == nil {
		x = unsafe.Pointer(&zeroVal[0])
	} else {
		x = mallocgc(unsafe.Sizeof(val), sliceType, true)
		*(*[]byte)(x) = val
	}
	return
}

// convI2I returns the new itab to be used for the destination value
// when converting a value with itab src to the dst interface.
func convI2I(dst *interfacetype, src *itab) *itab {
	if src == nil {
		return nil
	}
	if src.inter == dst {
		return src
	}
	return getitab(dst, src._type, false)
}

func assertI2I(inter *interfacetype, tab *itab) *itab {
	if tab == nil {
		// explicit conversions require non-nil interface value.
		panic(&TypeAssertionError{nil, nil, &inter.typ, ""})
	}
	if tab.inter == inter {
		return tab
	}
	return getitab(inter, tab._type, false)
}

func assertI2I2(inter *interfacetype, i iface) (r iface) {
	tab := i.tab
	if tab == nil {
		return
	}
	if tab.inter != inter {
		tab = getitab(inter, tab._type, true)
		if tab == nil {
			return
		}
	}
	r.tab = tab
	r.data = i.data
	return
}

func assertE2I(inter *interfacetype, t *_type) *itab {
	if t == nil {
		// explicit conversions require non-nil interface value.
		panic(&TypeAssertionError{nil, nil, &inter.typ, ""})
	}
	return getitab(inter, t, false)
}

func assertE2I2(inter *interfacetype, e eface) (r iface) {
	t := e._type
	if t == nil {
		return
	}
	tab := getitab(inter, t, true)
	if tab == nil {
		return
	}
	r.tab = tab
	r.data = e.data
	return
}

reflect相关

//go:linkname reflect_ifaceE2I reflect.ifaceE2I
func reflect_ifaceE2I(inter *interfacetype, e eface, dst *iface) {
	*dst = iface{assertE2I(inter, e._type), e.data}
}

//go:linkname reflectlite_ifaceE2I internal/reflectlite.ifaceE2I
func reflectlite_ifaceE2I(inter *interfacetype, e eface, dst *iface) {
	*dst = iface{assertE2I(inter, e._type), e.data}
}

iterate_itabs 迭代itabs全局hash表

func iterate_itabs(fn func(*itab)) {
	// Note: only runs during stop the world or with itabLock held,
	// so no other locks/atomics needed.
	t := itabTable
	for i := uintptr(0); i < t.size; i++ {
		m := *(**itab)(add(unsafe.Pointer(&t.entries), i*goarch.PtrSize))
		if m != nil {
			fn(m) //对m执行回调fn
		}
	}
}

全局数据表,staticuint64s用于避免在convTx中为小整数值分配

// staticuint64s is used to avoid allocating in convTx for small integer values.
var staticuint64s = [...]uint64{
	0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
	0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
	0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
	0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
	0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
	0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
	0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
	0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
	0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
	0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
	0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
	0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
	0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
	0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
	0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
	0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
	0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
	0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
	0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
	0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
	0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
	0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
	0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
	0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
	0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
	0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
	0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
	0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
	0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
	0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
	0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
	0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
}

// The linker redirects a reference of a method that it determined
// unreachable to a reference to this function, so it will throw if
// ever called.
func unreachableMethod() {
	throw("unreachable method called. linker bug?")
}

写在最后

由于时间关系,只能简单分析了,具体的分析过程可以放在以后。

所有接口的itab都会被加入到全局的hash表中,有些接口发生转换时会创建新的itab并加入全局hash表。全局hash表只增不减,当其中*itab个数到达其容量的75%时,会触发二倍的扩容。

接口中有动态类型和动态值的概念,在发生转换时,可能存在内存逃逸,调用接口中的方法与直接调用类型的方法之间是有性能差异的。

只有当一个接口的动态类型和动态值都是nil的时候,该接口才是nil的。

突然想到一个有趣的场景,在过去,每当“大促”来临前,很多电商网站后台都会尝试重启,之后用大量的测试数据来让运行中的代码分支“热”起来。即尽可能的触发各种场景,让代码在内存中是热的(比如我们接口转换的场景),这样一来,用户触发的操作就很少造成促销过程中临时加载代码的情况,从而保障网站运行的更加平稳,效率更高。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/156351.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

互联网应用的架构演变之路

文章目录单体应用架构垂直应用架构分布式架构SOA架构微服务架构SOA架构&微服务架构对比分布式应用开发解决方案随着互联网的发展&#xff0c;网站的应用也不断扩大&#xff0c;从而导致系统架构不断的进行变化&#xff0c;从互联网早起到现在&#xff0c;系统架构大致经历了…

用Python画一只小兔子,祝您新年前途似锦,大展宏图

用Python画一只小兔子&#xff0c;祝您新年前途似锦&#xff0c;大展宏图 兔年到了&#xff0c;祝大家新年前途似锦&#xff01;大展宏图&#xff01; 2021牛年&#xff0c;我用Python画了一头金牛&#xff0c;参考&#xff1a;Python画金牛 2022虎年&#xff0c;我用Python画…

MarkDown语法 + Typora笔记本

目录 一、多级标题 二、有序列表 三、无序列表 四、任务列表 五、行内代码 六、代码块 七、插入表格 八、插入图片 一、多级标题 1、语法 一级标题&#xff1a;# 二级标题&#xff1a;## 三级标题&#xff1a;### 四级标题&#xff1a;#### 五级标题&#xff1a;…

stackoverflow网站左下角弹框点击我接收所有cookie没反应怎么解决?

问题描述&#xff1a;打开stackoverflow网页后左下角总是有一个弹窗&#xff0c;点击接受所有cookie没有反应。 产生原因&#xff1a;因为是外网&#xff0c;因此点击按钮触发的时候被拦截了。 微软自带的edge浏览器&#xff1a; 打开浏览器进入扩展 选择管理扩展 获取Micro…

如何轻松应对IB数学?

如何轻松应对IB数学&#xff1f;同学想要在IB数学科取得好成绩&#xff0c;可以从两个方面来着手。 1.复习技巧 第一个是复习技巧。这方面&#xff0c;同学要清楚知道自己读的课程&#xff0c;它的教学大纲&#xff08;Syllabus&#xff09;要求是什么&#xff0c;还有它背后想…

【Bp2Lua】常量折叠和变量折叠

【Bp2Lua】常量折叠和变量折叠 谈一下编译器折叠优化算法 动机 变量折叠是 bp2lua 早期确定的两个技术卡点之一 bp2lua 做尽可能保守和必要的优化&#xff0c;提升生成代码的可读性&#xff0c;方便在生成代码上进行二次开发 常量折叠 常量折叠 - 维基百科&#xff0c;自…

Stlink固件更新问题“ST-Link is not in the dfu mode Please restart it“的解决方法

安装stlink utility&#xff1a;官网下载&#xff1a;https://www.st.com/content/st_com/zh.html在ST-LINK utility中连接芯片&#xff0c;提示仿真器版本过低&#xff0c;点击更新&#xff0c;报错提示&#xff1a;“ST LINK is not in the DFU mode plesse restart it”操作…

Day 6 Bean 的生命周期

建议浏览顺序从Day 1 开始。1 Bean的声明周期Spring Bean的生命周期是从 Bean 实例化之后&#xff0c;即通过反射创建出对象之后&#xff0c;到Bean成为一个完整对象&#xff0c;最终存储到单例池中&#xff0c;这个过程被称为Spring Bean的生命周期。Spring Bean的生命周期大体…

ArcGIS JS API分页查询小结

如果遇到发布的服务要素非常多&#xff0c;比如点要素&#xff0c;此时如果想要查询相关的属性或几何信息&#xff0c;如果使用featurelayer的query方法&#xff0c;可能会遇到server后台返回数限制&#xff0c;而只能返回获取到返回数上限的要素数目。 一个简单的方法是&…

nginx学习笔记4(小d课堂)

linux服务器安装jdk和jar包上传 我们把我们的文件放到我们的路径下&#xff0c;这部分之前学过了&#xff0c;这里我们再来复习一遍。 然后我们去解压这个压缩包&#xff1a; 然后我们给这个文件改个名字&#xff1a; 然后我们要去配置环境变量&#xff1a; 在文件末尾加 然后我…

新库上线 | CnOpenDataA股上市公司招投标数据

A股上市公司招投标数据 一、数据简介 招投标是指在市场经济条件下进行大宗货物的买卖、工程建设项目的发包与承包以及服务项目的采购与提供时所采取的一种普遍交易方式。招标和投标是一种商品交易行为&#xff0c;是交易过程的两个方面。历经三十多年的发展&#xff0c;我国已…

resultType自动映射与结果映射resultMap

今天继续完善一下mybatis系列相关博客&#xff0c;以便查阅&#xff0c;同时也希望能帮助到有需要的小伙伴&#xff0c;各位看到此博客的小伙伴&#xff0c;如有不对的地方请及时通过私信我或者评论此博客的方式指出&#xff0c;以免误人子弟。多谢&#xff01; 这一篇记录一下…

week 9 吴恩达 迁移学习 多任务学习 端到端学习

文章目录一、错误分析二、快速构建系统然后迭代三、训练和测试的不同数据分布1、不匹配数据的偏差和方差2、解决数据不匹配问题。四、迁移学习 transfer learning五、多任务学习 multi-task learning六、端到端 end-to-end learning一、错误分析 当我们在构建一个系统时&#…

自动驾驶BEV火了,再给它加点脑洞会靠谱吗?

作者 | 洪泽鑫 编辑 | Bruce百度今年Create大会上辅助驾驶板块的内容挺硬核的&#xff0c;不在这个行业内基本听不懂。 正好是研究兴趣所在&#xff0c;结合百度给的资料&#xff0c;试着来中译中一下。 总的来说&#xff0c;百度是弄了一个车路一体的BEV感知方案——叫UniBEV。…

基于FPGA的UDP 通信(二)

引言前文链接&#xff1a;基于FPGA的UDP 通信&#xff08;一&#xff09;本文继续介绍与以太网数据协议相关的内容。以太网帧协议IEEE802.3标准规定了&#xff0c;以太网数据传输的格式&#xff1a;字段解释&#xff1a;字段名称字段长度/&#xff08;字节&#xff09;含义前导…

【MyBatis】第二篇:核心配置文件常用标签

前提 Mbatis的配置文件中的顺序如下&#xff1a; MyBatis核心配置文件中的标签必须安装指定的顺序配置。 (properties?,settings?,typeAliases?,typeHandlers?,objectFactory?,objectWrapperFactory?,reflectorFactory?,plugins?,environments?,databaseIdProvider?…

SweetAlert让消息弹出窗口更加具有个性化!

SweetAlertSweetAlert是指可对JavaScript标准功能alert()和confirm()进行个性化定制的库。SweetAlert的要点官网上有很多示例&#xff0c;看了这些基本上就OK了。但是&#xff0c;在kintone上使用时&#xff0c;【弹出消息后更新页面】这个处理只参照示例来写的话&#xff0c;一…

微信小程序分包

1.什么是分包&#xff1f; 分包指的是把一个完整的小程序项目&#xff0c;按照需求划分为不同的子包&#xff0c;在构建时打包成不同的分包&#xff0c;用户在使用时按需进行加载。 2.分包的好处对小程序进行分包的好处主要有以下两点: 可以优化小程序首次启动的下载时间在多…

Elasticsearch 核心技术(四):索引管理、映射管理、文档管理(REST API)

❤️ 个人主页&#xff1a;水滴技术 &#x1f680; 支持水滴&#xff1a;点赞&#x1f44d; 收藏⭐ 留言&#x1f4ac; &#x1f338; 订阅专栏&#xff1a;大数据核心技术从入门到精通 文章目录一、索引管理1. 创建索引创建一个索引索引设置映射字段别名2. 获取索引3. 删除索…

阿拉伯数转中文与英文[找到规律,抽象问题,转换成代码]

阿拉伯数转中文与英文前言一、阿拉伯数字转换1、阿拉伯数字转中文a、案例b、解决方案2、阿拉伯数转英文a、案例b、解决方案总结参考文献前言 如果思考算法的解法方案是一种模拟&#xff0c;那么这一般不是个好的解决方案。对于一个复杂的问题&#xff0c;挖掘其中的规律&#…