链表定义
struct ListNode { 
    int val;
    ListNode *next;
    ListNode(int x) : val(x), next(nullptr) {}
};链表的遍历:ListNode p=head; while(p!=null) p=p.next;
找到链表的尾结点:p=head; while(p.next!=null)p=p.next;
链表节点的个数:
p=head; cnt=0; //cnt与p不同步对应
while(p!=null):cnt++; p=p.next
cnt与p不同步对应的原因:
while停止后,p为null,cnt为对应到最后一个节点上面
规律:开始的时候同步和结束时候的同步规律是一致的。
链表删除
注意:1.删除节点需要dummyNode 2.最后返回的是dummyNode.next而不是head.
因为head可能被删掉
ListNode dummyNode=new ListNode();
dummyNode.next=head;
(p.next为待删除节点)
p.next=p.next.next;
return dummyNode.next;
ListNode* deleteNode(ListNode* head, ListNode* p) {
        // 创建一个虚拟头节点,便于处理链表头部的删除操作
        ListNode dummyNode(0);
        dummyNode.next = head;
        // 将虚拟头节点的下一个节点指向原链表头节点
        ListNode* prev = &dummyNode;
        // 遍历链表,找到待删除节点的前驱节点
        while (prev->next&& prev->next != p) {
            prev = prev->next;
        }
        // 如果待删除节点存在,则进行删除操作
        if (prev->next) {
            prev->next = prev->next->next;
        } 
        else {
            std::cout << "Target node not found in the list." << std::endl;
        }
        // 返回处理后的新链表头节点(即原链表头节点)
        return dummyNode.next;
}链表插入
(1)头插法: dummyNode,p:
p.next=dummyNode.next;
dummyNode.next=p;
(2)尾插法
tail,p:
   tail.next=p; tail=p;在尾插法的过程中,tail.next不需要清空:
每次插入时tail.next都会重定向到待插入的节点
最后tail.next=null
找到链表的第index个节点
int i=1;
p=head;
//计数变量和p索引始终同步对应:while停止后,i对应p.
while(i<index&&p!=null)
     p=p.next;
     i++;链表翻转: dummyNode + 头插法
   ListNode dummyNode=new ListNode();
   dummyNode.next=null;
   ListNode p=head;
   if(head==null)return null;
   ListNode q=p.next;
   while(p!=null)
       q=p.next;
       p.next=dummyNode.next;
       dummyNode.next=p;
       p=q;
   return dummyNode.next;两个链表第一个公共的节点
(1)求两个链表长度n1,n2
(2)长的链表走|n1-n2|步,使两个链表长度相同
(3)两个链表一起走,相等返回,走到头返回null
倒数第k个节点
(1) 求节点个数n
(2)求第n-k+1个节点
删除重复节点
(1)增加虚拟头结点
(2)链表节点的删除
p.next=p.next.next
删除链表倒数第n个节点
(1)添加虚拟头结点
(2)求链表长度l
(3)找第l-n的节点并删除
判断环
如果有环:slow和fast走一定会相遇
如果没有环:在有限次遍历链表后,一定为空
if head==null:return false//特判
slow=head;
fast=head.next;   
while(slow!=fast&&slow!=null&&slow.next!=null&&fast!=null&&fast.next!=null)
       slow=slow.next;
       fast=fast.next.next;
       if(slow==fast)return true;
       return false 判断环的入口
(1)fast和slow置头结点,速度为2,1
(2)相遇后fast置头结点,速度为1
(3)fast和slow相遇的节点是入口
fast=pHead;
slow=pHead;
while(fast!=null&&fast.next!=null){
     fast=fast.next.next;slow=slow.next;
     if(fast==slow){
          fast=pHead;
          while(fast!=slow){
              fast=fast.next;
              slow=slow.next;}
          return fast;
return nullptr//如果遍历到空节点,说明没有环,返回null合并两个排序的链表
p=head1,q=head2;
tail = dummyNode;
while(p!=null&&q!=null){
     if(p.val<q.val)tail.next=p;tail=p;p=p.next;
     else  tail.next=q;tail=q;q=q.next;
}
tail直接指向非空的一个链表,如果两个链表都是空,那么就指向空
tail.next=(p==null)?q:p;
return dummyNode.next;回文链表
存储链表的值
指定区间反转链表
?
思路:切断后反转局部链表后重接回去。node1,node2,..,p,start,...end,q...noden
需要找到p,q,start,end
(1)把区间的链表单独拎出来:
p.next=null; end.next=null;
(2)反转区间reverse
(3)重写接回去
reverse(start);
增加虚拟头结点:
如果说从第一个开始就翻转,那么就得分情况讨论,所以要添加一个虚拟头结点。
奇偶链表
给定单链表的头节点 head ,将所有索引为奇数的节点和索引为偶数的节点分别组合在一起,然后返回重新排序的列表。 O(1) 的额外空间复杂度和 O(n) 的时间复杂度

两个虚拟头结点,使用尾插法,然后合并到一起。
ListNode *odd = new ListNode(0);
ListNode *even = new ListNode(0);
 ListNode *tail1=odd;
 ListNode *tail2=even;
 ListNode *p = head;
 int idx=1;
  while(p!=nullptr){
       if(idx%2!=0){
                tail1->next=p;
                tail1=p;
                p=p->next;
                idx++;
        }else{
                tail2->next=p;
                tail2=p;
                p=p->next;
                idx++;
            }
        }
//最后需要把tail2->next置空
        tail2->next=nullptr;
        tail1->next=even->next;
        return odd->next;
 }尾插法最后置空,否则会出现野指针错误。



















