1.输入文件:
 
2.代码:
setwd("E:/R/Rscripts/rG4相关绘图")
# 加载所需的库
library(tidyverse)
# 读取CSV文件
data <- read.csv("box-cds-ABD-不同类型rg4-2.csv", stringsAsFactors = FALSE)
# 组合Type1和Type2:通过paste0函数创建一个新列CombinedType,这个列是Type1和Type2列值的组合,
# 目的是为了生成区分不同Type1分类下的Type2组(如AG2L1-2、BG2L1-2等)。
data$CombinedType <- paste0(data$Type1, data$Type2)
# 定义一个函数,用于进行两两t检验并计算均值,同时避免比较的重复
perform_analysis <- function(subset_data, type_prefix) {
  # 使用组合类型进行分析
  subset_data$Type2 <- as.character(subset_data$CombinedType)
  unique_types <- unique(subset_data$Type2)
  
  results <- tibble(
    Type1 = character(),
    Group1 = character(),
    Group2 = character(),
    Mean1 = numeric(),
    Mean2 = numeric(),
    TStatistic = numeric(),
    PValue = numeric()
  )
  
  # 使用combn生成所有唯一的组合
  combn(unique_types, 2, function(x) {
    group1 <- x[1]
    group2 <- x[2]
    scores1 <- subset_data$Score[subset_data$Type2 == group1]
    scores2 <- subset_data$Score[subset_data$Type2 == group2]
    
    t_test_result <- t.test(scores1, scores2)
    
    # 将每次比较的结果追加到结果集
    results <<- bind_rows(results, tibble(
      Type1 = type_prefix,
      Group1 = group1,
      Group2 = group2,
      Mean1 = mean(scores1),
      Mean2 = mean(scores2),
      TStatistic = t_test_result$statistic,
      PValue = t_test_result$p.value
    ))
  }, simplify = FALSE)
  
  return(results)
}
# 对每个Type1分类进行分析
results_list <- lapply(unique(data$Type1), function(type) {
  subset_data <- subset(data, Type1 == type)
  perform_analysis(subset_data, type)
})
# 整合结果并输出
all_results <- bind_rows(results_list)
print(all_results)
 
3.输出结果:
 



















