前言:
本文知识点:
1. C/C++内存分布2. C语言中动态内存管理方式3. C++中动态内存管理4. operator new与operator delete函数 5. new和delete的实现原理 (干货在此)
6. 定位new表达式(placement-new)7. 常见面试题
 
目录
C/C++内存分布
1.内存划分题
2.sizeof 和 strlen 区别?
3.计算sizeof和strlen题
C语言中动态内存管理方式:malloc/calloc/realloc/free
malloc/calloc/realloc和free
C++内存管理方式
new/delete操作内置类型
new和delete操作自定义类型
对于单链表的改进
new和delete的应用
operator new与operator delete函数(重要点进行讲解)
operator new与operator delete函数(重点)
new和delete的实现原理
干货在这(了解即可):
定位new表达式(placement-new)
常见面试题
malloc/free和new/delete的区别
内存泄漏
C/C++内存分布
我们先来看下面的一段代码和相关问题
代码示例:
int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{
     static int staticVar = 1;
     int localVar = 1;
     int num1[10] = { 1, 2, 3, 4 };
     char char2[] = "abcd";
     const char* pChar3 = "abcd";
     int* ptr1 = (int*)malloc(sizeof(int) * 4);
     int* ptr2 = (int*)calloc(4, sizeof(int));
     int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);
     free(ptr1);
     free(ptr3);
} 
1.内存划分题
题解:
内存区域划分:
【说明】
1.栈又叫堆栈--非静态局部变量/函数参数/返回值等等,栈是向下增长的。
2.内存映射段是高效的 I/O 映射方式,用于装载一个共享的动态内存库。用户可使用系统接口创建共享共享内存,做进程间通信。(未学到linux仅作了解即可)
3.堆用于程序运行时动态内存分配,堆是可以上增长的。
4.数据段--存储全局数据和静态数据。
5.代码段--可执行的代码/只读常量。
2.sizeof 和 strlen 区别?
这篇文章有详细的总结 --> 指针进阶(3) -- 关于sizeof和strlen的详细总结
在C/C++中:
sizeof:这是一个运算符,编译时确定,用于计算变量或类型的大小(以字节为单位),包括数组、指针、结构体等。对于字符数组或字符串,它返回整个数组(包括结束符\0)的总字节数。
strlen:这是一个库函数,运行时确定,用于计算以\0结尾的字符串的实际字符数,不包括结束符\0。因此,对于包含字符串的字符数组,strlen返回的是字符串的有效字符数量。简单地说:
sizeof计算内存容量;strlen计算字符串长度。
3.计算sizeof和strlen题

C语言中动态内存管理方式:malloc/calloc/realloc/free
malloc/calloc/realloc和free
#include<stdio.h>
#include<malloc.h>
int main()
{
	int* p1 = (int*)malloc(sizeof(int));
	free(p1);
	int* p2 = (int*)calloc(4, sizeof(int));
	// 这里需要free(p2)吗?
	//free(p2);
	int* p3 = (int*)realloc(p2, sizeof(int) * 10);
	free(p3);
}
 
为什么不需要free(p2)?
因为p2申请了四个字节的空间,此基础上,如果free掉p2,那么p3申请空间的时候,p2指向那块空间已经属于操作系统了,这时候再操作就引发野指针异常

malloc:
- 功能:动态分配指定字节数的内存。
 - 特点:不会初始化分配的内存,内容随机。
 - 语法:
 void* malloc(size_t size);- 示例:
 int *p = (int*)malloc(sizeof(int)*n);分配n个整数大小的连续内存空间。
calloc:
- 功能:动态分配指定数量、特定类型的内存空间,并初始化为0。
 - 特点:不仅分配内存,还会清零初始化。
 - 语法:
 void* calloc(size_t num, size_t size);- 示例:
 int *p = (int*)calloc(n, sizeof(int));分配并初始化n个整数大小的连续内存空间为0。
realloc:
- 功能:调整已分配内存块的大小,可以扩大或缩小。
 - 特点:如果扩大内存,新增空间内容不确定;如果缩小内存,多余部分会被释放,缩小后的内存区域保持不变。
 - 语法:
 void* realloc(void* ptr, size_t new_size);- 示例:
 int *new_p = (int*)realloc(p, sizeof(int)*m);尝试更改指针p指向的内存区域大小为m个整数所需空间,返回新的内存地址,有可能与原地址相同也可能不同。总的来说:
malloc用于单纯分配未初始化的内存。calloc用于分配并初始化为零的内存。realloc用于调整已分配内存区域的大小,提供了一种灵活的内存管理手段。
更多详细内容请移步到 --> 【C进阶】-- 动态内存管理
C++内存管理方式
new/delete操作内置类型
malloc和new对于内置类型都 只会申请空间但不会初始化 ,因为 new没有调构造函数同样对于delete和free来说,都只会释放对象的空间, delete不会调用析构函数
int main()
{
     int* p3 = (int*)malloc(sizeof(int)); // C
     int* p4 = new int;//这个地方还是随机值(内置类型不会调构造)
     free(p3);
     delete p4;
} 
   
对于内置类型的详细例子
include<stdio.h>
#include<malloc.h>
#include<iostream>
using namespace std;
int main()
{
	//不会初始化的例子
	    int* p2 = (int*)malloc(sizeof(int));
	//自动计算大小,不需要强转,动态申请一个int类型的空间
	    int* p3 = new int;
	//动态分配一块足够存储 10 个整数的连续内存空间
	    int* p4 = (int*)malloc(sizeof(int) * 10);
	// 动态申请10个int类型的空间
	    int* p5 = new int[10];
	
	//malloc的释放方式
	    //free(p2);
	    //free(p4);
	//new的释放方式
	    //delete p3;
	    //delete[] p5;
	//会初始化的例子
	
	//额外支持空间 + 初始化
	//动态申请一个int类型的空间
	    int* p6 = new int(10);
	// 动态申请10个int类型的空间,并初始化前三个
	    int* p7 = new int[10]{ 1,2,3 };
	// 动态申请10个int类型的空间
	    int* p8 = new int[10]{};
	return 0;
} 
   
注意:申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用 new[]和delete[],注意:匹配起来使用!!!
还需注意的是:
new和delete操作自定义类型
new/delete 对于【自定义类型】除了 开空间 /释放空间 ,还会调用 构造函数和析构函数
int main()
{
	A* p1 = (A*)malloc(sizeof(A));
	A* p2 = new A(1);
	free(p1);
	delete p2;
} 
 
自定义类型A,代码示例:
class A
{
public:
	A(int a=0)
	:_a(a)
	{
		cout << "A()" << endl;
	}
	~A()
	{
		cout << "~A()" << endl;
	}
private:
	int _a;
};
int main()
{
	//malloc没有办法很好地支持动态申请的对象初始化
	A* p1 = (A*)malloc(sizeof(A));
} 
- malloc没有办法很好地支持动态申请的对象初始化
 
- new的使用:开空间,加构造函数初始化
 
int main()
{
    A* p2 = new A; //0也是初始化,如果没有初始化就是随机值了
    A* p3 = new A(3);
} 
 执行:

- delete的使用:自定义类型,调用析构函数+释放空间
 
int main()
{
//开空间,加构造函数初始化    
    A* p2 = new A;
	A* p3 = new A(3);
//调用析构函数+释放空间
	delete p2;
	delete p3;
} 
 
- 调用默认构造初始化
 
int main()
{
    A* p4 = new A[10];
	delete[] p4;
} 
 
- 调用显示构造初始化
 
int main()
{
    A aa1(2);
	A aa2(3);
	A* p5 = new A[10]{ aa1,aa2 };//使用有名对象进行数组初始化
	delete[] p5;
} 
 
- 使用了匿名对象进行数组初始化
 
int main()
{
    A* p6 = new A[10]{ A(1),A(2)};//使用了匿名对象进行数组初始化
	delete[] p6;
} 
 
- 使用int型数据进行数组初始化
 

总结:
在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数,
而malloc与 free不会
对于单链表的改进
原单链表:【数据结构】C--单链表
改进后:
#include <iostream>
using namespace std;
struct ListNode
{
	int _val;
	ListNode* next;
	ListNode(int _val = 0)
	:_val(_val), next(nullptr) 
	{}
};
// 打印链表函数
void PrintList(ListNode* head) {
	while (head != nullptr) {
		cout<<head->_val;
		if (head->next != nullptr) {
			cout << "->";
		}
		head = head->next;
	}
	cout << endl;
}
int main() {
	ListNode* n1 = new ListNode(1);
	ListNode* n2 = new ListNode(2);
	ListNode* n3 = new ListNode(3);
	ListNode* n4 = new ListNode(4);
	ListNode* n5 = new ListNode(5);
	n1->next = n2;
	n2->next = n3;
	n3->next = n4;
	n4->next = n5;
	n5->next = nullptr;
	PrintList(n1);  // 调用函数打印链表
	// 记得在最后释放内存...
	delete[] n1;
	return 0;
} 
 
new和delete的应用
以下的写法均不可取:
改正:![]()
#include<iostream>
using namespace std;
typedef char DataType;
class Stack
{
public:
	Stack(size_t capacity = 4)
	{
		cout << "Stack()" << endl;
		_array = new DataType[capacity];
		_capacity = 0;
		_size = 0;
	}
	void Push(DataType data)
	{
		_array[_size] = data;
		_size++;
	}
	
	~Stack()
	{
		cout << "~Stack()" << endl;
		delete[] _array;
		_array = nullptr;
		_size = _capacity = 0;
	}
private:
	DataType* _array;
	int _capacity;
	int _size;
};
Stack* func()
{
	int n;
	cin >> n;
	Stack* pst = new Stack(n);
	return pst;
}
int main()
{
	Stack* ptr = func();
	ptr->Push(1);
	ptr->Push(2);
	delete ptr;
	return 0;
} 
 执行:

operator new与operator delete函数(重要点进行讲解)
operator new与operator delete函数(重点)
对于内置类型,在内存分配的基本功能上, operator new和malloc,以及operator delete 和 free 的 用法几乎是一样的,即都可用于在堆上分配和释放内存![]()
#include<iostream> using namespace std; int main() { //以下三种方式开辟空间和释放空间的效果是一样的 int* p1 = (int*)malloc(sizeof(int)); //malloc free(p1);//free int* p2 = new int; //new delete p2;//delete int* p3 = (int*)operator new(sizeof(int));//operator new operator delete (p3);//operator delete return 0; }
 
 C++中当开辟空间失败会抛异常,可以通过代码实现捕获异常, 这是C++的一个编程规范, 如果直接用malloc,申请失败会返回NULL。但是如果没有对这个进行处理的话,会将 这个NULL当作返回成功,正常使用了,原本应该是要抛异常的.
底层汇编代码:![]()
void *__CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{
// try to allocate size bytes
void *p;
while ((p = malloc(size)) == 0)
{
 if (_callnewh(size) == 0)
     {
         // report no memory
         // 如果申请内存失败了,这里会抛出bad_alloc 类型异常
         static const std::bad_alloc nomem;
         _RAISE(nomem);
     }
return (p);
}
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void *pUserData)
{
     _CrtMemBlockHeader * pHead;
     RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
     if (pUserData == NULL)
         return;
     _mlock(_HEAP_LOCK);  /* block other threads */
     __TRY
         /* get a pointer to memory block header */
         pHead = pHdr(pUserData);
          /* verify block type */
         _ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
         _free_dbg( pUserData, pHead->nBlockUse );
     __FINALLY
         _munlock(_HEAP_LOCK);  /* release other threads */
     __END_TRY_FINALLY
     return;
}
/*
free的实现
*/
#define   free(p)               _free_dbg(p, _NORMAL_BLOCK) 
  底层源码分析:通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果 malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施 就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。
new和delete的实现原理
如果申请的是内置类型的空间,new和malloc,delete和free 基本类似,不同的地方是:new/delete 申请和释放的是单个元素的空间, new[]和delete[ ]申请的是连续空间,而且 new在申请空间失败时会抛异常,malloc会返回NULL。
- new的原理
 
1. 调用operator new函数申请空间2. 在申请的空间上执行构造函数,完成对象的构造
- delete的原理
 
1. 在空间上执行析构函数,完成对象中资源的清理工作2. 调用operator delete函数释放对象的空间
- new T[N]的原理
 
1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请2. 在申请的空间上执行N次构造函数
- delete[]的原理
 
1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间
![]()
#include<iostream> using namespace std; int main() { int* p1 = new int[10]; //free(p1); delete p1; //delete[]p1; }![]()
 
  永远记住一个点: 匹配使用!匹配使用!匹配使用! ( 没有写析构函数是不会报错的,但用free的话可能会导致内存泄露,因为没调析构)
干货在这(了解即可):
由于编译器的原因,以下的两张图,左边写了析构的,会在申请的空间前面多申请4byte ,然后这4个字节用来存 10(因为new的时候是10个int数据),注意:这里的存的 10是个数,不是字节如果用delete[ ],它就会自动偏移到新开的4byte的空间和后面原本的空间是合并在一起的,所以释放的时候一把释放是没问题,并且是释放了10次(释放不能分期,不能分段)但是如果你用delete 和free 的话,那编译器就不会偏移了,因为new 或者 malloc 的时候就是那么多,所以你释放的时候就那么多。因此,如果写了析构,这个时候用 delete 或者 free 只会把4byte后面的空间给释放掉,编译器会报错所以 右边的那副图,没写析构,但没报错的原因是因为 指针的位置没有指向错误。
 
  
 
  定位new表达式(placement-new)
定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。
 
     include<iostream>
using namespace std;
内存池
int main()
{
	// p1现在指向的只不过是与Stack对象相同大小的一段空间,
	//还不能算是一个对象,因为构造函数没有执行
	Stack* pst1 = (Stack*)operator new(sizeof(Stack));
	//pst1->Stack(4);//不支持
	new(pst1)Stack(4);//显示调用构造函数
                      //注意:如果A类的构造函数有参数时,此处需要传参
	pst1->~Stack();//可以显示调用析构
	operator delete(pst1);//显示调用析构函数
	return 0;
} 
      
常见面试题
malloc/free和new/delete的区别
- malloc和free是函数,new和delete是操作符
 - malloc申请的空间不会初始化,new可以初始化
 - malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可, 如果是多个对象,[ ]中指定对象个数即可。
 - malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型。
 - malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需 要捕获异常。
 - 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new 在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成 空间中资源的清理。
 
内存泄漏
内存泄露的危害
长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务等等,出现勺存泄漏会导致响应越来越慢,最终卡死。
代码如下:
void MemoryLeaks()
{
   // 1.内存申请了忘记释放
  int* p1 = (int*)malloc(sizeof(int));
  int* p2 = new int;
  
  // 2.异常安全问题
  int* p3 = new int[10];
  
  Func(); // 这里Func函数抛异常导致 delete[] p3未执行,p3没被释放.
  
  delete[] p3;
} 
       
      - 在linux下内存泄漏检测:linux下几款内存泄漏检测工具
 - 在windows下使用第三方工具:VLD工具说明
 - 其他工具:内存泄露检测工具比较
 
- 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps:这个理想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下一条智能指针来管理才有保证。
 - 采用RAI思想或者智能指针来管理资源。
 - 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。
 - 出问题了使用内存泄漏工具检测。ps:不过很多工具都不够靠谱,或者收费昂贵。
 
总结一下:
内存泄漏非常常见,解决方案分为两种:1 、事前预防型。如智能指针等。 2 、事后查错型。如泄漏检测工具。
🔧本文修改次数:0
🧭更新时间:2024年3月10日



 
 

 
 
 
 
 
 
 
 
 
  
 
  
 
    
 
    


















