在这里之间写代码:
import numpy as np
import torch
import torch.nn as nn
import cv2
#1.silu激活函数
class SiLU(nn.Module):
    @staticmethod
    def forward(x):
        return x*torch.sigmoid(x)
#2.获得轨道的类
def railway_classes3(img,x1,x2,y1,y2):
    img2 = img[x1:x2, y1:y2, :]
    return img2
class Conv(nn.Module):
    def __init__(self):
        super(Conv, self).__init__()
        #标准化加激活函数
        self.bn     = nn.BatchNorm2d(3)#标准化
        self.act    = SiLU()
    def forward(self,x):
        #x=self.conv(x)
        x=self.bn(x)
        x= self.act(x)
        return x
if __name__ == "__main__":
    #输入图片路径
    image=cv2.imread(r"imgs/000002.jpg")
    img2=railway_classes3(image, x1=640, x2=740, y1=825, y2=1025)
    cv2.imshow("ss",img2)
    cv2.waitKey(0)
    cv2.imwrite("imgs/00.jpg",img2)
    images = img2.reshape(1, 3, img2.shape[0], img2.shape[1])
    data = torch.tensor(images)
    datas = torch.tensor(images, dtype=torch.float32)
    sp=Conv()
    output=sp(datas)
    ar=output.detach().numpy()
    result=ar.reshape(img2.shape[0], img2.shape[1],3)
    print(result)
    #图片处理
    for i in range(result.shape[0]):
        for j in range(1,result.shape[1]-2):
            ss1 = result[i, j - 1:j + 2,:].mean()
            m = result[i][j].mean() - ss1
            if m >= ss1:
                print(ss1)
                img2[i][j] = 255
            else:
                img2[i][j] = 0
    img2[:, -3:] = 0
    img2[:, :3] = 0
    cv2.imshow("ss", img2)
    cv2.waitKey(0) 
处理效果如下:
第一张光线比较强的图片:

原图 二值化图
第二张光线比较暗的图

原图 二值化图
以上图片处理的方式用了BatchNorm处理和Xsilu处理,最后感觉这种效果还可以,尤其是在强光下的效果。
2.用普通的计算方法代码如下:
import numpy as np
import cv2
import time
import os
colors = [ (0, 0, 0), (128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128), (128, 0, 128), (0, 128, 128),
                            (128, 128, 128), (64, 0, 0), (192, 0, 0), (64, 128, 0), (192, 128, 0), (64, 0, 128), (192, 0, 128),
                            (64, 128, 128), (192, 128, 128), (0, 64, 0), (128, 64, 0), (0, 192, 0), (128, 192, 0), (0, 64, 128),
                            (128, 64, 12)]
def cluster(points, radius=100):
    """
    points: pointcloud
    radius: max cluster range
    """
    print("................", len(points))
    items = []
    while len(points)>1:
        item = np.array([points[0]])
        base = points[0]
        points = np.delete(points, 0, 0)
        distance = (points[:,0]-base[0])**2+(points[:,1]-base[1])**2#获得距离
        infected_points = np.where(distance <= radius**2)#与base距离小于radius**2的点的坐标
        item = np.append(item, points[infected_points], axis=0)
        border_points = points[infected_points]
        points = np.delete(points, infected_points, 0)
        while len(border_points) > 0:
            border_base = border_points[0]
            border_points = np.delete(border_points, 0, 0)
            border_distance = (points[:,0]-border_base[0])**2+(points[:,1]-border_base[1])**2
            border_infected_points = np.where(border_distance <= radius**2)
            #print("/",border_infected_points)
            item = np.append(item, points[border_infected_points], axis=0)
            if len(border_infected_points)>0:
                for k in border_infected_points:
                    if points[k] not in border_points:
                        border_points=np.append(border_points,points[k], axis=0)
                #border_points = points[border_infected_points]
            points = np.delete(points, border_infected_points, 0)
        items.append(item)
    return items
#2.获得轨道的类
def railway_classes(img,x1,x2,y1,y2):
    img2 = img[x1:x2, y1:y2, :]  # [540:741, 810:1080],截取轨道画线的区域,对该区域识别轨道
    print("img2:", img2.shape)
    dst = np.zeros((img2.shape[0], img2.shape[1]), np.uint8)
    for i in range(img2.shape[0]):
        for j in range(2, img2.shape[1] - 2):
            z = img2[i, j - 2:j + 2]
            # print(z)
            a_z = np.average(z, axis=0)  # 按列求均值
            # print(a_z)
            m = abs(img2[i][j] - a_z).max()
            # print(m)
            if m > 12:
                dst[i][j] = 255
            else:
                dst[i][j] = 0
    cv2.imshow("ss", dst)
    cv2.waitKey(0)
    img2=dst
    # cv2.imwrite("D:\AI\project\eye_hand_biaoding\\railways\dbscan\img\\170.jpg", img2)
    # 3.腐蚀膨胀消除轨道线外的点
    kernel = np.uint8(np.ones((5, 1)))
    # 膨胀图像.....为了使得轨道线更粗,且补足轨道线缺失的地方
    dilated = cv2.dilate(img2, kernel)
    kernel = np.ones((2, 3), np.uint8)
    dilated = cv2.erode(dilated, kernel)
    #
    ss=np.argwhere(dilated >0)#dilated
    # cv2.imwrite("D:\AI\project\eye_hand_biaoding\\railways\dbscan\img\\120.jpg",dilated)
    cv2.imshow("ss", dilated)
    cv2.waitKey(0)
    #聚类算法
    t1=time.time()
    items = cluster(ss, radius=3)
    i=0
    out=[]#获得大于300个坐标的类
    for item in items:
        if len(item)>180:
            out.append(item)
            for k in item:
                img[k[0]+x1][k[1]+y1]=colors[i]
            i+=1
    t2=time.time()
    print("dbscan消耗时间:",t2-t1)
    cv2.imwrite("D:\AI\project\eye_hand_biaoding\\railways\dbscan\img\\0.jpg", img)
    return out
#2.获得轨道的类
def railway_classes2(img,x1,x2,y1,y2):
    img2 = img[x1:x2, y1:y2, :]  # [540:741, 810:1080],截取轨道画线的区域,对该区域识别轨道
    print("img2:", img2.shape)
    dst = np.zeros((img2.shape[0], img2.shape[1]), np.uint8)
    for i in range(img2.shape[0]):
        for j in range(2, img2.shape[1] - 2):
            z = img2[i, j - 2:j + 2]
            # print(z)
            a_z = np.average(z, axis=0)  # 按列求均值
            # print(a_z)
            m = abs(img2[i][j] - a_z).max()
            # print(m)
            if m > 12:
                dst[i][j] = 255
            else:
                dst[i][j] = 0
    cv2.imshow("ss", dst)
    cv2.waitKey(0)
    img2=dst
    # cv2.imwrite("D:\AI\project\eye_hand_biaoding\\railways\dbscan\img\\170.jpg", img2)
    # 3.腐蚀膨胀消除轨道线外的点
    kernel = np.uint8(np.ones((5, 1)))
    # 膨胀图像.....为了使得轨道线更粗,且补足轨道线缺失的地方
    dilated = cv2.dilate(img2, kernel)
    kernel = np.ones((2, 3), np.uint8)
    dilated = cv2.erode(dilated, kernel)
    #
    ss=np.argwhere(dilated >0)#dilated
    # cv2.imwrite("D:\AI\project\eye_hand_biaoding\\railways\dbscan\img\\120.jpg",dilated)
    cv2.imshow("ss", dilated)
    cv2.waitKey(0)
    #聚类算法
    t1=time.time()
    items = cluster(ss, radius=3)
    i=0
    out=[]#获得大于300个坐标的类
    for item in items:
        if len(item)>80:
            out.append(item)
            for k in item:
                img[k[0]+x1][k[1]+y1]=colors[i]
            i+=1
    t2=time.time()
    print("dbscan消耗时间:",t2-t1)
    cv2.imwrite("D:\AI\project\eye_hand_biaoding\\railways\dbscan\img\\0.jpg", img)
    return out
#2.获得轨道的类
def railway_classes3(img,x1,x2,y1,y2):
    img2 = img[x1:x2, y1:y2, :]  # [540:741, 810:1080],截取轨道画线的区域,对该区域识别轨道
    print("img2:", img2.shape)
    dst = np.zeros((img2.shape[0], img2.shape[1]), np.uint8)
    for i in range(img2.shape[0]):
        for j in range(2, img2.shape[1] - 2):
            z = img2[i, j - 2:j + 2]
            # print(z)
            a_z = np.average(z, axis=0)  # 按列求均值
            # print(a_z)
            m = abs(img2[i][j] - a_z).max()
            # print(m)
            if m > 11:
                dst[i][j] = 255
            else:
                dst[i][j] = 0
    cv2.imshow("ss", dst)
    cv2.waitKey(0)
    img2=dst
    # cv2.imwrite("D:\AI\project\eye_hand_biaoding\\railways\dbscan\img\\170.jpg", img2)
    # # 3.腐蚀膨胀消除轨道线外的点
    kernel = np.uint8(np.ones((4, 2)))
    # 膨胀图像.....为了使得轨道线更粗,且补足轨道线缺失的地方
    dilated = cv2.dilate(img2, kernel)
    kernel = np.ones((3, 3), np.uint8)
    dilated = cv2.erode(dilated , kernel)
    # #
    # kernel = np.uint8(np.ones((5, 2)))
    # # 膨胀图像.....为了使得轨道线更粗,且补足轨道线缺失的地方
    # dilated = cv2.dilate(dilated, kernel)
    ss=np.argwhere(dilated >0)#dilated
    # cv2.imwrite("D:\AI\project\eye_hand_biaoding\\railways\dbscan\img\\120.jpg",dilated)
    cv2.imshow("ss", dilated)
    cv2.waitKey(0)
    #聚类算法
    t1=time.time()
    items = cluster(ss, radius=3)
    i=0
    out=[]#获得大于300个坐标的类
    for item in items:
        if len(item)>80:
            out.append(item)
            for k in item:
                img[k[0]+x1][k[1]+y1]=colors[i]
            i+=1
    t2=time.time()
    print("dbscan消耗时间:",t2-t1)
    cv2.imwrite("D:\AI\project\eye_hand_biaoding\\railways\dbscan\img\\0.jpg", img)
    return out
#以15个左右的像素点,将类每个类分为很多个小类画直线
def fenlei(classes,num):
    class_mean=[]
    for item in classes:
        item_classes=[]
        #获取初始点的值
        hh=item[:5]
        y=hh[0][0]
        x=int(hh[:,-1:].mean())
        item_classes.append((x, y))
        item =item[item[:,0].argsort()]
        #对数据分成很多个段,再
        while len(item) > num+15:
            items=item[:num]
            s1=items
            y10=int(s1[:, :1].mean())
            x10=int(s1[:,-1:].mean())
            item_classes.append((x10,y10))
            item=item[120:]
        if len(item)>5:
            s1 = item
            y10 = int(s1[:, :1].mean())
            x10 = int(s1[:, -1:].mean())
            item_classes.append((x10, y10))
        class_mean.append(item_classes)
    all_k=[]
    for item in class_mean:
        k_b=[]
        for i in range(len(item)-1):
            x10,y10=item[i][0],item[i][1]
            x20, y20 = item[i+1][0], item[i+1][1]
            k1=(y10-y20)/(x10-x20+0.00001)
            b1=y10-k1*x10
            k_b.append((k1, b1, [y10,y20]))
        all_k.append(k_b)
    print(all_k)
    return all_k
#画线
def draw_line(img,all_k,x1,x2,y1,y2):
    print("......................画直线.............................")
    for k_b in all_k:
        ss=np.array(k_b)
        ks=np.array(ss[:,:1]/len(ss)).sum()*0.5
        #print(ks)
        for i in range(len(k_b)):
            k, b, (y10, y20) = k_b[i]
            x10 = int((y10 - b) / (k+0.000001))
            x20 = int((y20 - b) / (k+0.000001))
            cv2.line(img, (x10 + y1, y10 + x1), (x20 + y1, y20 + x1), (0, 0, 255), 2)
    cv2.imshow("line_detect_possible_demo", img)
    cv2.waitKey(0)
if __name__ == '__main__':
    start=time.time()
    img_paths = r"imgs\000004.jpg"
    save_paths = r"imgs\20.jpg"
    img = cv2.imread(img_paths)
    img2=img.copy()
    all_class = {}
    all_class["1"] = []
    all_class["2"] = []
    # 第1次*************************************************************************************
    #获得轨道的类
    classes=railway_classes(img,  x1=680, x2=740, y1=825, y2=1045)#
    # 求第一段的类
    all_class["1"].append(classes[0])
    all_class["2"].append(classes[1])
    start1 = classes[0][:20, 1:].mean() + 825
    start2 = classes[1][:20, 1:].mean() + 825
    print(start1, start2)
    #=============================================================================================================
    # classes2 = railway_classes2(img, x1=640, x2=680, y1=845, y2=995)  #
    # print("......................................................")
    # # 求第一段的类
    # for item in classes2:
    #     # print("start===>",item[:20,1:].mean()+845)
    #     # print("end===>",item[-20:,1:].mean()+845)
    #     if abs((item[-20:, 1:].mean() + 845) - start1) < 10:
    #         np.vstack((all_class["1"][0], item))
    #         start1 = item[:20, 1:].mean() + 845
    #     elif abs((item[-20:, 1:].mean() + 845) - start2) < 10:
    #         np.vstack((all_class["2"][0], item))
    #         start2 = item[:20, 1:].mean() + 845
    # print(start1, start2)
    #
    # # =============================================================================================================
    # classes3 = railway_classes3(img, x1=610, x2=640, y1=855, y2=965)  #
    # print("......................................................")
    # for item in classes3:
    #     # print("start===>",item[:,1:].mean()+855)
    #     # print("end===>", item[-20:, 1:].mean() + 855)
    #     if abs((item[-20:, 1:].mean() + 855) - start1) < 10:
    #         np.vstack((all_class["1"][0], item))
    #         start1 = item[:20, 1:].mean() + 855
    #     elif abs((item[-20:, 1:].mean() + 855) - start2) < 10:
    #         np.vstack((all_class["2"][0], item))
    #         start2 = item[:20, 1:].mean() + 855
    # print(start1, start2)
    ss=[]
    ss.append(all_class["1"][0])
    ss.append(all_class["2"][0])
    print(ss[0])
    # 以15个左右的像素点,将类每个类分为很多个小类画直线
    num=100
    all_k=fenlei(ss,num)#classes
    #
    # # 画线
    draw_line(img, all_k, x1=680, x2=740, y1=825, y2=1035)#
 
 
 
                
















