
专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!!
一、论文摘要
由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络是困难的。特征图中的冗余是那些成功的细胞神经网络的一个重要特征,但在神经结构设计中很少进行研究。本文提出了一种新的Ghost模块,通过少量的计算生成更多的特征图。基于一组内在特征图,我们以低廉的成本应用一系列线性变换来生成许多重影特征图,这些重影特征图可充分揭示内在特征背后的信息。所提出的Ghost模块可以作为即插即用组件来升级现有的卷积神经网络。Ghost瓶颈被设计为堆叠Ghost模块,然后可以轻松地建立轻量级GhostNet。
适用检测目标: 轻量化或移动端部署
二、Ghost Conv模块详解
《GhostNet: More Features from Cheap Operations》
论文地址: https://arxiv.org/abs/1911.11907
2.1 模块简介
Ghost Conv的主要思想: 通过一系列线性变换,以很小的计算量从原始特征发掘所需信息的“Ghost”特征图(Ghost feature maps)
总结: 一种类似残差的模块
Ghost Conv模块的原理图

三、Ghost Conv模块使用教程
3.1 Ghost Conv模块的代码
class GhostConv(nn.Module):
    """Ghost Convolution https://github.com/huawei-noah/ghostnet."""
    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
        """Initializes the GhostConv object with input channels, output channels, kernel size, stride, groups and
        activation.
        """
        super().__init__()
        c_ = c2 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
        self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
    def forward(self, x):
        """Forward propagation through a Ghost Bottleneck layer with skip connection."""
        y = self.cv1(x)
        return torch.cat((y, self.cv2(y)), 1)
3.2 在YOlO v9中的添加教程
阅读YOLOv9添加模块教程或使用下文操作
1. 将YOLOv9工程中models下common.py文件中增加模块的代码。

2. 将YOLOv9工程中models下yolo.py文件中的第718行(可能因版本变化而变化)增加以下代码。

            RepNCSPELAN4, SPPELAN, GhostConv}:
3.3 运行配置文件
# YOLOv9
# Powered bu https://blog.csdn.net/StopAndGoyyy
# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()
# anchors
anchors: 3
# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],  
   
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4
   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3
   # avg-conv down
   [-1, 1, ADown, [256]],  # 4-P3/8
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5
   # avg-conv down
   [-1, 1, ADown, [512]],  # 6-P4/16
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7
   # avg-conv down
   [-1, 1, ADown, [512]],  # 8-P5/32
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9
  ]
# YOLOv9 head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 10
   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13
   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)
   # avg-conv-down merge
   [-1, 1, ADown, [256]],
   [[-1, 13], 1, Concat, [1]],  # cat head P4
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)
   # avg-conv-down merge
   [-1, 1, ADown, [512]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)
   
   
   # multi-level reversible auxiliary branch
   
   # routing
   [5, 1, CBLinear, [[256]]], # 23
   [7, 1, CBLinear, [[256, 512]]], # 24
   [9, 1, CBLinear, [[256, 512, 512]]], # 25
   
   # conv down
   [0, 1, Conv, [64, 3, 2]],  # 26-P1/2
   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 27-P2/4
   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28
   # avg-conv down fuse
   [-1, 1, ADown, [256]],  # 29-P3/8
   [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31
   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 32-P4/16
   [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34
   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 35-P5/32
   [[25, -1], 1, CBFuse, [[2]]], # 36
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37
   [-1, 1, GhostConv, [512, 3]],  # 38
   
   
   # detection head
   # detect
   [[31, 34, 38, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]
3.4 训练过程

欢迎关注!



















