永磁同步电机无感FOC(龙伯格观测器)算法技术总结-实战篇

news2025/7/4 13:31:07

文章目录

  • 1、ST龙伯格算法分析(定点数)
    • 1.1 符号说明
    • 1.2 最大感应电动势计算
    • 1.3 系数计算
    • 1.4 龙伯格观测器计算
    • 1.5 锁相环计算
    • 1.6 观测器增益计算
    • 1.7 锁相环PI计算(ST)
    • 1.8 平均速度的用意
  • 2、启动策略
    • 2.1 V/F压频比控制
    • 2.2 I/F压频比控制
  • 3、算法开发
    • 3.1 Luenberger核心算法模块
      • 3.1.1 Luenberger.h
      • 3.1.2 Luenberger.c
    • 3.2 三段式启动状态机模块
      • 3.2.1 mc_statemachine.h
      • 3.2.2 mc_statemachine.c
    • 3.3 初始化及函数调用
      • 3.3.1 初始化
      • 3.3.2 反馈速度处理
      • 3.3.3 FOC模块处理

龙伯格观测+PLL理论篇: https://blog.csdn.net/qq_28149763/article/details/136346434
说明:关键代码已在本文给出(源码不开源,抱歉)

1、ST龙伯格算法分析(定点数)

1.1 符号说明

在这里插入图片描述

1.2 最大感应电动势计算

在这里插入图片描述

1.3 系数计算

在这里插入图片描述

1.4 龙伯格观测器计算

在这里插入图片描述

1.5 锁相环计算

在这里插入图片描述

1.6 观测器增益计算

在这里插入图片描述
在这里插入图片描述

1.7 锁相环PI计算(ST)

在这里插入图片描述

1.8 平均速度的用意

在这里插入图片描述

2、启动策略

在这里插入图片描述

2.1 V/F压频比控制

在这里插入图片描述

2.2 I/F压频比控制

在这里插入图片描述

3、算法开发

在这里插入图片描述

3.1 Luenberger核心算法模块

3.1.1 Luenberger.h

/**
  ******************************************************************************
  * @file    Luenberger.h
  * @author  hlping
  * @version V1.0.0
  * @date    2023-12-28
  * @brief   
  ******************************************************************************
  * @attention
  *
  ******************************************************************************
  */

#ifndef __LUENBERGER_H
#define __LUENBERGER_H

/* *INDENT-OFF* */
#ifdef __cplusplus
extern "C"
{
    #endif

    /* Includes -----------------------------------------------------------------*/
    #include <types.h>
    #include "mc_math.h"
    #include "foc.h"

    /* Macros -------------------------------------------------------------------*/
    #define BUFFER_SIZE (u16)64
    #define BUF_POW2    LOG2(BUFFER_SIZE)

    #define F1            (s16)(16384)
    #define F2            (s16)(8192)
    #define F1LOG         LOG2(F1)
    #define F2LOG         LOG2(F2)

    #define PLL_KP_F      (s16)(16384)
    #define PLL_KI_F      (u16)(65535)
    #define KPLOG         LOG2(PLL_KP_F)
    #define KILOG         LOG2(PLL_KI_F)
    #define PI 			      3.14159265358979

    #define VARIANCE_THRESHOLD  0.0625            

    typedef struct
    {
        s32 K1;
        s32 K2;
        s16 hC2;
        s16 hC4;
        s16 hF1;
        s16 hF2;
        s16 hF3;
        s16 hC1;
        s16 hC3;
        s16 hC5;
        s16 hC6;
        s32 wIalfa_est;
        s32 wIbeta_est;
        s32 wBemf_alfa_est;
        s32 wBemf_beta_est;
        s32 hBemf_alfa_est;
        s32 hBemf_beta_est;
    }STO_Observer_t;

    typedef struct
    {
        s16 Rs;
        u16 Rs_factor;
        s16 Ls;
        u32 Ls_factor;
        u16 Pole;
        u16 pwm_frequency;
        u32 max_speed_rpm;
        s16 max_voltage;
        s16 max_current;
        s16 motor_voltage_constant;
        s16 motor_voltage_constant_factor;
        float motor_voltage_constant_f;
        u16 max_bemf_voltage;
    }STO_Parameter_t;

    typedef struct
    {
        bool_t Max_Speed_Out;
        bool_t Min_Speed_Out;
        bool_t Is_Speed_Reliable;
        s16 hSpeed_Buffer[BUFFER_SIZE];
        u16 bSpeed_Buffer_Index;
        s32 wMotorMaxSpeed_dpp;
        u16 hPercentageFactor;
        s16 hRotor_Speed_dpp;
        s32 wSpeed_PI_integral_sum;
        s16 hSpeed_P_Gain;
        s16 hSpeed_I_Gain;
        s32 speed_sum;
    }STO_Speed_t;

    typedef struct
    {
        STO_Observer_t STO_Observer;
        STO_Speed_t STO_Speed;
        STO_Parameter_t STO_Parameter;
        s16 hRotor_El_Angle;
        s16 hRotor_Speed;
        s16 hLast_Rotor_Speed;
        s16 hRotor_avSpeed;
    }STO_luenberger;

    /* Typedefs -----------------------------------------------------------------*/


    /* Function declarations ----------------------------------------------------*/
    void STO_InitSpeedBuffer(STO_luenberger *pHandle);
    void STO_Init(STO_luenberger *pHandle);
    void STO_Update_Constant(STO_luenberger *pHandle);
    void STO_Set_k1k2(STO_luenberger *pHandle,s32 pk1,s32 pk2);
    void STO_PLL_Set_Gains(STO_luenberger *pHandle,s16 pkp,s16 pki);
    void STO_Gains_Init(STO_luenberger *pHandle);
    s16 Speed_PI(STO_luenberger *pHandle,s16 hAlfa_Sin, s16 hBeta_Cos);
    s16 Calc_Rotor_Speed(STO_luenberger *pHandle,s16 hBemf_alfa, s16 hBemf_beta);
    void Store_Rotor_Speed(STO_luenberger *pHandle,s16 hRotor_Speed);
    s16 STO_Get_Speed(STO_luenberger *pHandle);
    s16 STO_Get_Electrical_Angle(STO_luenberger *pHandle);
    void STO_Set_Electrical_Angle(STO_luenberger *pHandle,s16 eiAngle);
    void STO_Calc_Speed(STO_luenberger *pHandle);
    void STO_CalcElAngle(STO_luenberger *pHandle,FOCVars_t *pfoc, s16 hBusVoltage);


    /* *INDENT-OFF* */
    #ifdef __cplusplus
}
#endif
/* *INDENT-ON* */

#endif /* __LUENBERGER_H */

/**** END OF FILE ****/

3.1.2 Luenberger.c

在这里插入图片描述

/**
  ******************************************************************************
  * @file    Luenberger.c
  * @author  hlping
  * @version V1.0.0
  * @date    2023-12-28
  * @brief   
  ******************************************************************************
  * @attention
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "Luenberger.h"

/* Private define ------------------------------------------------------------*/

/**
* @brief 初始化观测器速度缓冲区
* @param pHandle 指向STO_luenberger结构体的指针,用于存储控制器的状态信息
* @return 无返回值
*/
void STO_InitSpeedBuffer(STO_luenberger *pHandle)
{
	u8 i;

	/*init speed buffer*/
	for (i=0;i<BUFFER_SIZE;i++)
	{
		pHandle->STO_Speed.hSpeed_Buffer[i] = 0x00;
	}
	pHandle->STO_Speed.bSpeed_Buffer_Index = 0;
}

/**
* @brief 初始化观测器
* @param pHandle 指向STO_luenberger结构体的指针,用于存储控制器的状态信息
* @return 无返回值
*/
void STO_Init(STO_luenberger *pHandle)
{
	pHandle->STO_Observer.wIalfa_est = 0;
	pHandle->STO_Observer.wIbeta_est = 0;
	pHandle->STO_Observer.wBemf_alfa_est = 0;
	pHandle->STO_Observer.wBemf_beta_est = 0;
	
	pHandle->STO_Speed.Is_Speed_Reliable = FALSE;
	pHandle->STO_Speed.wSpeed_PI_integral_sum = 0;
	pHandle->STO_Speed.Max_Speed_Out = FALSE;
	pHandle->STO_Speed.Min_Speed_Out = FALSE;
	pHandle->STO_Speed.hRotor_Speed_dpp = 0;
	pHandle->STO_Speed.speed_sum = 0;
	
	pHandle->hRotor_avSpeed=0;
	pHandle->hRotor_El_Angle = 0;            //could be used for start-up procedure
	pHandle->hRotor_avSpeed = 0;

	STO_InitSpeedBuffer(pHandle);

//	hSpeed_P_Gain = 1638;  //0.1*16384
//	hSpeed_I_Gain = 0;
}

/**
* @brief 设置观测器增益参数
* @param pHandle 指向STO_luenberger结构体的指针,用于存储控制器的状态信息
* @param pk1 增益参数1
* @param pk2 增益参数2
* @return 无返回值
*/
void STO_Set_k1k2(STO_luenberger *pHandle,s32 pk1,s32 pk2)
{
  pHandle->STO_Observer.K1 = pk1;
	pHandle->STO_Observer.K2 = pk2;
}

/**
* @brief 设置观测器PLL增益参数
* @param pHandle 指向STO_luenberger结构体的指针,用于存储控制器的状态信息
* @param pkp PLL比例增益参数
* @param pki PLL积分增益参数
* @return 无返回值
*/
void STO_PLL_Set_Gains(STO_luenberger *pHandle,s16 pkp,s16 pki)
{
  pHandle->STO_Speed.hSpeed_P_Gain = pkp;
	pHandle->STO_Speed.hSpeed_I_Gain = pki;
}

/**
* @brief 更新观测器常数参数
* @param pHandle 指向STO_luenberger结构体的指针,用于存储控制器的状态信息
* @return 无返回值
*/
void STO_Update_Constant(STO_luenberger *pHandle)
{
	float temp_rs;
	float temp_ls;
	
	temp_rs=pHandle->STO_Parameter.Rs/(float)pHandle->STO_Parameter.Rs_factor;
	temp_ls=pHandle->STO_Parameter.Ls/(float)pHandle->STO_Parameter.Ls_factor;
	
  pHandle->STO_Observer.hC1 = (s32)(pHandle->STO_Observer.hF1 * temp_rs/(temp_ls*pHandle->STO_Parameter.pwm_frequency));
	//pHandle->STO_Observer.hC2 = (s32)(hF1 * k1/(float)(pHandle->STO_Parameter.pwm_frequency));
	pHandle->STO_Observer.hC2 = (s32)(pHandle->STO_Observer.K1);//�����Ǵ������ģ�����Ҫ�ڳ���Ƶ��
	pHandle->STO_Observer.hC3 = (s32)(pHandle->STO_Observer.hF1 * pHandle->STO_Parameter.max_bemf_voltage/(temp_ls*pHandle->STO_Parameter.max_current*pHandle->STO_Parameter.pwm_frequency));
	//pHandle->STO_Observer.hC4 = (s32)(((k2 * max_current/(max_bemf_voltage))*hF2)/(float)pHandle->STO_Parameter.pwm_frequency);
	//pHandle->STO_Observer.hC4 = (s32)(hF1 * k2/(float)(pHandle->STO_Parameter.pwm_frequency));
	pHandle->STO_Observer.hC4 = (s32)(pHandle->STO_Observer.K2);//�����Ǵ������ģ�����Ҫ�ڳ���Ƶ��
  pHandle->STO_Observer.hC5 = (s32)(pHandle->STO_Observer.hF1 * pHandle->STO_Parameter.max_voltage/(temp_ls*pHandle->STO_Parameter.max_current*pHandle->STO_Parameter.pwm_frequency));

//	hC1 = pHandle->STO_Observer.hC1;
//	hC2 = pHandle->STO_Observer.hC2;
//	hC3 = pHandle->STO_Observer.hC3;
//	hC4 = pHandle->STO_Observer.hC4;
//	hC5 = pHandle->STO_Observer.hC5;
}

/**
* @brief 初始化观测器增益参数
* @param pHandle 指向STO_luenberger结构体的指针,用于存储控制器的状态信息
* @return 无返回值
*/
void STO_Gains_Init(STO_luenberger *pHandle)
{
	s16 htempk;
		
	pHandle->STO_Observer.hF3 = 1;
	htempk = (s16)((100*65536)/(F2*2*PI));	//100 rad/s
	while (htempk != 0)
	{
		htempk /= 2;
		pHandle->STO_Observer.hF3 *= 2;
	}
	pHandle->STO_Observer.hC6 = (s16)((F2 * pHandle->STO_Observer.hF3 * 2 * PI)/65536);//10000
	
	pHandle->STO_Observer.hF1 = F1;
	pHandle->STO_Observer.hF2 = F2;
	
	pHandle->STO_Parameter.motor_voltage_constant_f = (float)(pHandle->STO_Parameter.motor_voltage_constant/(float)pHandle->STO_Parameter.motor_voltage_constant_factor);
	pHandle->STO_Parameter.max_bemf_voltage = (u16)((1.2 * pHandle->STO_Parameter.max_speed_rpm*pHandle->STO_Parameter.motor_voltage_constant_f*SQRT_2)/(1000*SQRT_3));
//	pHandle->STO_Parameter.max_current = (u16)(pHandle->STO_Parameter.max_current);
//	pHandle->STO_Parameter.max_voltage = (s16)(pHandle->STO_Parameter.max_voltage);
	
  STO_Update_Constant(pHandle);
	
//	hSpeed_P_Gain = PLL_KP_GAIN;
//	hSpeed_I_Gain = PLL_KI_GAIN;

	pHandle->STO_Speed.wMotorMaxSpeed_dpp = (s32)((1.2 * pHandle->STO_Parameter.max_speed_rpm*65536*pHandle->STO_Parameter.Pole)/(float)(pHandle->STO_Parameter.pwm_frequency*60));
	pHandle->STO_Speed.hPercentageFactor = (u16)(VARIANCE_THRESHOLD*128);
}


/**
* @brief 计算电机旋转速度的PID控制器
* @param pHandle 指向STO_luenberger结构体的指针,用于存储控制器的状态信息
* @param hAlfa_Sin e_alpha*sin
* @param hBeta_Cos e_beta*cos
* @return 返回计算得到的电机旋转速度
*/
s16 Speed_PI(STO_luenberger *pHandle,s16 hAlfa_Sin, s16 hBeta_Cos)
{
	s32 wSpeed_PI_error, wOutput;
	s32 wSpeed_PI_proportional_term, wSpeed_PI_integral_term;

	wSpeed_PI_error = hBeta_Cos - hAlfa_Sin;
#if 0		//????
	if(wSpeed_PI_error > 50)
		wSpeed_PI_error = 50;
	else if(wSpeed_PI_error < -50)
		wSpeed_PI_error = -50;
#endif
	wSpeed_PI_proportional_term = pHandle->STO_Speed.hSpeed_P_Gain * wSpeed_PI_error;  // !!!p
	wSpeed_PI_integral_term = pHandle->STO_Speed.hSpeed_I_Gain * wSpeed_PI_error;      // !!!i

	if ( (pHandle->STO_Speed.wSpeed_PI_integral_sum >= 0) && (wSpeed_PI_integral_term >= 0) && (pHandle->STO_Speed.Max_Speed_Out == FALSE) )
	{
		if ((s32)(pHandle->STO_Speed.wSpeed_PI_integral_sum + wSpeed_PI_integral_term) < 0)
		{
			pHandle->STO_Speed.wSpeed_PI_integral_sum = S32_MAX;
		}
		else
		{
			pHandle->STO_Speed.wSpeed_PI_integral_sum += wSpeed_PI_integral_term;  //integral
		}
	}
	else if ( (pHandle->STO_Speed.wSpeed_PI_integral_sum <= 0) && (wSpeed_PI_integral_term <= 0) && (pHandle->STO_Speed.Min_Speed_Out == FALSE) )
	{
		if((s32)(pHandle->STO_Speed.wSpeed_PI_integral_sum + wSpeed_PI_integral_term) > 0)
		{
			pHandle->STO_Speed.wSpeed_PI_integral_sum = -S32_MAX;
		}
		else
		{
			pHandle->STO_Speed.wSpeed_PI_integral_sum += wSpeed_PI_integral_term;   //integral
		}
	}
	else
	{
		pHandle->STO_Speed.wSpeed_PI_integral_sum += wSpeed_PI_integral_term;   //integral
	}

	wOutput = (wSpeed_PI_proportional_term >> KPLOG) + (pHandle->STO_Speed.wSpeed_PI_integral_sum >> KILOG);

	if (wOutput > pHandle->STO_Speed.wMotorMaxSpeed_dpp)
	{
		pHandle->STO_Speed.Max_Speed_Out = TRUE;
		wOutput = pHandle->STO_Speed.wMotorMaxSpeed_dpp;
	}
	else if (wOutput < (-pHandle->STO_Speed.wMotorMaxSpeed_dpp))
	{
		pHandle->STO_Speed.Min_Speed_Out = TRUE;
		wOutput = -pHandle->STO_Speed.wMotorMaxSpeed_dpp;
	}
	else
	{
		pHandle->STO_Speed.Max_Speed_Out = FALSE;
		pHandle->STO_Speed.Min_Speed_Out = FALSE;
	}

  return ((s16)wOutput);
}

/**
* @brief 锁相环计算电机控制器旋转速度
* @param pHandle 指向STO_luenberger结构体的指针,用于存储控制器的状态信息
* @param hBemf_alfa BEMF alpha轴反电动势观测值
* @param hBemf_beta BEMF beta轴反电动势观测值
* @return 返回计算得到的电机旋转速度
*/
s16 Calc_Rotor_Speed(STO_luenberger *pHandle,s16 hBemf_alfa, s16 hBemf_beta)
{
	s32 wAlfa_Sin_tmp, wBeta_Cos_tmp;
	s16 hOutput;
	Trig_Components Local_Components;

	Local_Components = Trig_Functions(pHandle->hRotor_El_Angle);

	/* Alfa & Beta BEMF multiplied by hRotor_El_Angle Cos & Sin*/
	wAlfa_Sin_tmp = (s32)(hBemf_alfa * Local_Components.hSin);
	wBeta_Cos_tmp = (s32)(hBemf_beta * Local_Components.hCos);
	//alfa_sin_test = wAlfa_Sin_tmp >> 15;
	//beta_cos_test = wBeta_Cos_tmp >> 15;
	/* Speed PI regulator */
	hOutput = Speed_PI(pHandle,(s16)(wAlfa_Sin_tmp >> 15), (s16)(wBeta_Cos_tmp >> 15));

	return (hOutput);
}

/**
* @brief 将电机旋转速度存储数组中
* @param pHandle 指向STO_luenberger结构体的指针,用于存储控制器的状态信息
* @param hRotor_Speed 要存储的电机旋转速度
* @return 无返回值
*/
void Store_Rotor_Speed(STO_luenberger *pHandle,s16 hRotor_Speed)
{
	static s32 start_flag;

	pHandle->STO_Speed.hSpeed_Buffer[pHandle->STO_Speed.bSpeed_Buffer_Index] = hRotor_Speed;
	pHandle->STO_Speed.speed_sum += pHandle->STO_Speed.hSpeed_Buffer[pHandle->STO_Speed.bSpeed_Buffer_Index];
	if(++(pHandle->STO_Speed.bSpeed_Buffer_Index) >= BUFFER_SIZE) //16
	{
		pHandle->STO_Speed.bSpeed_Buffer_Index = 0;
		start_flag = 1;
	}
	if(start_flag == 0)
	{
		pHandle->hRotor_avSpeed = pHandle->STO_Speed.speed_sum / pHandle->STO_Speed.bSpeed_Buffer_Index;
	}
	else
	{
		pHandle->hRotor_avSpeed = pHandle->STO_Speed.speed_sum >> BUF_POW2;
		pHandle->STO_Speed.speed_sum -= pHandle->STO_Speed.hSpeed_Buffer[pHandle->STO_Speed.bSpeed_Buffer_Index];
	}
	pHandle->STO_Speed.hRotor_Speed_dpp = pHandle->hRotor_avSpeed;
/*
	bSpeed_Buffer_Index++;
	if (bSpeed_Buffer_Index == BUFFER_SIZE) //64
	{
		bSpeed_Buffer_Index = 0;
		STO_Calc_Speed();
	}
	hSpeed_Buffer[bSpeed_Buffer_Index] = hRotor_Speed;
*/
}

/**
* @brief 获取电机旋转速度
* @param pHandle 指向STO_luenberger结构体的指针,用于存储控制器的状态信息
* @return 返回电机旋转速度
*/
s16 STO_Get_Speed(STO_luenberger *pHandle)
{
	return (pHandle->hRotor_avSpeed);
}

/**
* @brief 获取电机转子的电角度
* @param pHandle 指向STO_luenberger结构体的指针,用于存储控制器的状态信息
* @return 返回电机电角位
*/
s16 STO_Get_Electrical_Angle(STO_luenberger *pHandle)
{
	return (pHandle->hRotor_El_Angle);
}

/**
* @brief 设置电机转子的电角度
* @param pHandle 指向STO_luenberger结构体的指针,用于存储控制器的状态信息
* @param eiAngle 设置的电机电角位
* @return 无返回值
*/
void STO_Set_Electrical_Angle(STO_luenberger *pHandle,s16 eiAngle)
{
	pHandle->hRotor_El_Angle = eiAngle;
}

/**
* @brief 计算观测速度
* @param pHandle 指向STO_luenberger结构体的指针,用于存储控制器的状态信息
* @return 无返回值
*/
void STO_Calc_Speed(STO_luenberger *pHandle)
{
	s32 wAverage_Speed = 0;
	s32 wError;
	s32 wAverageQuadraticError = 0;
	u8 i;

	for (i = 0; i < BUFFER_SIZE; i++)
	{
		wAverage_Speed += pHandle->STO_Speed.hSpeed_Buffer[i];
	}

	wAverage_Speed = wAverage_Speed >> BUF_POW2;

	pHandle->STO_Speed.hRotor_Speed_dpp = (s16)(wAverage_Speed);

	for (i = 0; i < BUFFER_SIZE; i++)
	{
		wError = pHandle->STO_Speed.hSpeed_Buffer[i] - wAverage_Speed;
		wError = (wError * wError);
		wAverageQuadraticError += (u32)(wError);
	}

	//It computes the measurement variance
	wAverageQuadraticError= wAverageQuadraticError >> BUF_POW2;

	//The maximum variance acceptable is here calculated as ratio of average speed
	wAverage_Speed = (s32)(wAverage_Speed * wAverage_Speed);
	wAverage_Speed = (wAverage_Speed >> 7) * pHandle->STO_Speed.hPercentageFactor;

#if 0 // for debug only
	QuadraticError = wAverageQuadraticError;
	AverageSpeed = wAverage_Speed;
#endif

	if (wAverageQuadraticError > wAverage_Speed)
	{
		pHandle->STO_Speed.Is_Speed_Reliable = FALSE;
	}
	else
	{
		pHandle->STO_Speed.Is_Speed_Reliable = TRUE;
	}
}


/**
* @brief 观测器观测电角度
* @param pHandle 指向STO_luenberger结构体的指针,用于存储控制器的状态信息
* @param pfoc 指向FOCVars_t结构体的指针,用于存储电压和电流信息
* @param hBusVoltage 输入电压
* @return 无返回值
*/
void STO_CalcElAngle(STO_luenberger *pHandle,FOCVars_t *pfoc, s16 hBusVoltage)
{
	s32 wIalfa_est_Next, wIbeta_est_Next;
	s32 wBemf_alfa_est_Next, wBemf_beta_est_Next;

	s16 hValfa, hVbeta;
	s16 hIalfa_err, hIbeta_err;
	s32 bDirection;
	s16 hRotor_Speed;

	if (pHandle->STO_Observer.wBemf_alfa_est > (s32)(S16_MAX * pHandle->STO_Observer.hF2))
	{
		pHandle->STO_Observer.wBemf_alfa_est = S16_MAX * pHandle->STO_Observer.hF2;
	}
	else if (pHandle->STO_Observer.wBemf_alfa_est <= (s32)(S16_MIN * pHandle->STO_Observer.hF2))
	{
		pHandle->STO_Observer.wBemf_alfa_est = -S16_MAX * pHandle->STO_Observer.hF2;
	}

	if (pHandle->STO_Observer.wBemf_beta_est > (s32)(S16_MAX * pHandle->STO_Observer.hF2))
	{
		pHandle->STO_Observer.wBemf_beta_est = S16_MAX * pHandle->STO_Observer.hF2;
	}
	else if (pHandle->STO_Observer.wBemf_beta_est <= (s32)(S16_MIN * pHandle->STO_Observer.hF2))
	{
		pHandle->STO_Observer.wBemf_beta_est = -S16_MAX * pHandle->STO_Observer.hF2;
	}

	if (pHandle->STO_Observer.wIalfa_est > (s32)(S16_MAX * pHandle->STO_Observer.hF1))
	{
		pHandle->STO_Observer.wIalfa_est = S16_MAX * pHandle->STO_Observer.hF1;
	}
	else if (pHandle->STO_Observer.wIalfa_est <= (s32)(S16_MIN * pHandle->STO_Observer.hF1))
	{
		pHandle->STO_Observer.wIalfa_est = -S16_MAX * pHandle->STO_Observer.hF1;
	}

	if (pHandle->STO_Observer.wIbeta_est > S16_MAX * pHandle->STO_Observer.hF1)
	{
		pHandle->STO_Observer.wIbeta_est = S16_MAX * pHandle->STO_Observer.hF1;
	}
	else if (pHandle->STO_Observer.wIbeta_est <= S16_MIN * pHandle->STO_Observer.hF1)
	{
		pHandle->STO_Observer.wIbeta_est = -S16_MAX * pHandle->STO_Observer.hF1;
	}

	hIalfa_err = (s16)((pHandle->STO_Observer.wIalfa_est >> F1LOG)- pfoc->Ialphabeta.alpha);
	hIbeta_err = (s16)((pHandle->STO_Observer.wIbeta_est >> F1LOG)- pfoc->Ialphabeta.beta);

	hValfa = (s16)((pfoc->Valphabeta.alpha * hBusVoltage) >> 15);   //�������ߵ�ѹĿ���Ǽ�С���ߵ�ѹ������ϵͳ��Ӱ��
	hVbeta = (s16)((pfoc->Valphabeta.beta * hBusVoltage) >> 15);    //�������ߵ�ѹĿ���Ǽ�С���ߵ�ѹ������ϵͳ��Ӱ��

	/*alfa axes observer*/
	wIalfa_est_Next = (s32)(pHandle->STO_Observer.wIalfa_est - (s32)(pHandle->STO_Observer.hC1 * (s16)(pHandle->STO_Observer.wIalfa_est >> F1LOG))
	                  +(s32)(pHandle->STO_Observer.hC2 * hIalfa_err)+(s32)(pHandle->STO_Observer.hC5 * hValfa)
	                  -(s32)(pHandle->STO_Observer.hC3 * (s16)(pHandle->STO_Observer.wBemf_alfa_est >> F2LOG)));
	//I(n+1)=I(n)-rs*T/Ls*I(n)+K1*(I(n)-i(n))+T/Ls*V-T/Ls*emf
	wBemf_alfa_est_Next = (s32)(pHandle->STO_Observer.wBemf_alfa_est + (s32)(pHandle->STO_Observer.hC4 * hIalfa_err)
	                      +(s32)(pHandle->STO_Observer.hC6 * pHandle->STO_Speed.hRotor_Speed_dpp * (pHandle->STO_Observer.wBemf_beta_est / (pHandle->STO_Observer.hF2 * pHandle->STO_Observer.hF3))));//(wBemf_beta_est>>20)));
	//emf(n+1)=emf(n)+K2*(I(n)-i(n))+p*w*emfb*T

	/*beta axes observer*/
	wIbeta_est_Next = (s32)(pHandle->STO_Observer.wIbeta_est - (s32)(pHandle->STO_Observer.hC1 * (s16)(pHandle->STO_Observer.wIbeta_est >> F1LOG))
						+(s32)(pHandle->STO_Observer.hC2 * hIbeta_err)+(s32)(pHandle->STO_Observer.hC5 * hVbeta)
						-(s32)(pHandle->STO_Observer.hC3 * (s16)(pHandle->STO_Observer.wBemf_beta_est >> F2LOG)));

	wBemf_beta_est_Next = (s32)(pHandle->STO_Observer.wBemf_beta_est + (s32)(pHandle->STO_Observer.hC4 * hIbeta_err)
	                       -(s32)(pHandle->STO_Observer.hC6 * pHandle->STO_Speed.hRotor_Speed_dpp * (pHandle->STO_Observer.wBemf_alfa_est / (pHandle->STO_Observer.hF2 * pHandle->STO_Observer.hF3))));//(wBemf_alfa_est>>20)));

  /* Extrapolation of present rotation direction, necessary for PLL */
	if (pHandle->STO_Speed.hRotor_Speed_dpp >= 0)
	{
		bDirection = -1;
	}
	else
	{
		bDirection = 1;
	}

  /*Calls the PLL blockset*/

	pHandle->STO_Observer.hBemf_alfa_est = pHandle->STO_Observer.wBemf_alfa_est >> F2LOG;
	pHandle->STO_Observer.hBemf_beta_est = pHandle->STO_Observer.wBemf_beta_est >> F2LOG;

	pHandle->hRotor_Speed = Calc_Rotor_Speed(pHandle,(s16)(pHandle->STO_Observer.hBemf_alfa_est * bDirection),(s16)(-pHandle->STO_Observer.hBemf_beta_est * bDirection));

	if(pfoc->Vqd.q > 0)
	{
		if(pHandle->hRotor_Speed < 0)
		{
			pHandle->hRotor_Speed = -pHandle->hRotor_Speed;
		}
	}
	else //MotorCtrl.Dir == CCW
	{
		if(pHandle->hRotor_Speed > 0)
		{
			pHandle->hRotor_Speed = -pHandle->hRotor_Speed;
		}
	}

	Store_Rotor_Speed(pHandle,pHandle->hRotor_Speed);
	pHandle->hRotor_El_Angle = (s16)(pHandle->hRotor_El_Angle + pHandle->hRotor_Speed);
	/*storing previous values of currents and bemfs*/
	pHandle->STO_Observer.wIalfa_est = wIalfa_est_Next;
	pHandle->STO_Observer.wBemf_alfa_est = wBemf_alfa_est_Next;

	pHandle->STO_Observer.wIbeta_est = wIbeta_est_Next;
	pHandle->STO_Observer.wBemf_beta_est = wBemf_beta_est_Next;
}
/**** END OF FILE ****/

3.2 三段式启动状态机模块

3.2.1 mc_statemachine.h

mc_statemachine.h定义相关变量和结构体以及函数申明:

/**
  ******************************************************************************
  * @file    mc_statemachine.h
  * @author  hlping
  * @version V1.0.0
  * @date    2022-11-28
  * @brief   
  ******************************************************************************
  * @attention
  *
  ******************************************************************************
  */

#ifndef __MC_STATEMACHINE_H
#define __MC_STATEMACHINE_H

/* *INDENT-OFF* */
#ifdef __cplusplus
extern "C"
{
#endif

/* Includes -----------------------------------------------------------------*/
#include <types.h>
#include "Luenberger.h"

/* Macros -------------------------------------------------------------------*/


/* Typedefs -----------------------------------------------------------------*/
#define OPEN_LOOP		  	0
#define CLOSE_LOOP			1
#define IDLE_STATE			2
#define CLOSE_SWITCH		3

#define OPENLOOPTIMEINSEC  8.0

typedef enum{
	MOTOR_STOP=0,			
	MOTOR_INIT=1,			
	MOTOR_START=2,		
	MOTOR_RUN=3,			
	MOTOR_FAULT=4,			
	MOTOR_BRAKE=5			
} MCStatus_t;

//typedef struct
//{
//	MCStatus_t Status;
//	u32 StatusMacCnt;
//	u32 Dir;				
//	bool_t DirChangeFlag;	
//	bool_t StartupFlag;		

//	s16 SpdRampRef;		
//	s16 SpdRef;			
//}mc_control_t;

typedef struct
{
	u32 State;
	u32 Angle;
	s16 LockCnt;
	
	u16 pole;
	u32 pwm_frequency;
	float looptimeinsec;
	//u32 time;
	u32 locktime;
	u16 initialSpeedinRpm;
	u16 start_iq;
	u16 start_iq_max;
	u16 min_iq;
	u16 start_vq;
	u16 endSpeedOpenloop;
	u16 inc_iq;
	u32 ramp_time;
	u32 delta_startup_ramp;
	
	s16 ElangleError;
	bool_t speed_loop_enable;
	bool_t current_loop_enable;
}mc_openloop_t;

/* Function declarations ----------------------------------------------------*/
void mc_statemachine_init(mc_openloop_t *ploop);
void mc_statemachine_process(mc_openloop_t *popen,STO_luenberger *pHandle,FOCVars_t *pfoc,s16 hBusVoltage);
u16 mc_get_state(mc_openloop_t *ploop);
bool_t mc_get_speed_loop_enable(mc_openloop_t *ploop);
void mc_set_speed_loop_enable(mc_openloop_t *ploop,bool_t state);
bool_t mc_get_current_loop_enable(mc_openloop_t *ploop);
void mc_set_current_loop_enable(mc_openloop_t *ploop,bool_t state);
void mc_set_vf_iqRef(FOCVars_t *pfoc,int16_t piqref);
void mc_parameter_init(mc_openloop_t *ploop);

/* *INDENT-OFF* */
#ifdef __cplusplus
}
#endif
/* *INDENT-ON* */

#endif /* __MC_STATEMACHINE_H */

/**** END OF FILE ****/

3.2.2 mc_statemachine.c

在这里插入图片描述

/**
  ******************************************************************************
  * @file    mc_statemachine.c
  * @author  hlping
  * @version V1.0.0
  * @date    2023-01-08
  * @brief   
  ******************************************************************************
  * @attention
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "mc_statemachine.h"
#include "public_global.h"

/* Variable definitions ------------------------------------------------------*/
/**
* @brief 初始化电机启动控制器状态机
* @param ploop 指向mc_openloop_t结构体的指针,用于存储控制器的状态信息
* @return 无返回值
*/
void mc_statemachine_init(mc_openloop_t *ploop)
{
	 ploop->speed_loop_enable = FALSE;
	 ploop->current_loop_enable = FALSE;
//	 locktime = ploop->time;
//   ploop->Angle = 0;
//	 ploop->State = IDLE_STATE;
//	 ploop->LockCnt = 0;
//	 endSpeedOpenloop = ploop->endSpeedOpenloop;
	 ploop->looptimeinsec = 1/(float)ploop->pwm_frequency;
	 ploop->inc_iq = 32767 * (ploop->start_iq_max - ploop->start_iq)/ploop->locktime;
	 ploop->ramp_time = (u32)(ploop->endSpeedOpenloop * ploop->pole * 65536 * ploop->looptimeinsec * 65536 /60 );
	 ploop->delta_startup_ramp = (u32)((ploop->ramp_time/OPENLOOPTIMEINSEC)/(float)ploop->pwm_frequency);
}

/**
* @brief 处理电机启动控制器状态机
* @param popen 指向mc_openloop_t结构体的指针,用于存储控制器的状态信息
* @param pHandle 指向STO_luenberger结构体的指针,用于存储观测器状态
* @param pfoc 指向FOCVars_t结构体的指针,用于存储FOC相关变量
* @param hBusVoltage 输入电压,单位为V
* @return 无返回值
*/
void mc_statemachine_process(mc_openloop_t *popen,STO_luenberger *pHandle,FOCVars_t *pfoc,s16 hBusVoltage)
{
  if(popen->LockCnt >= popen->locktime && popen->State != IDLE_STATE)
		STO_CalcElAngle(pHandle,pfoc, hBusVoltage);
	
	if(popen->State == OPEN_LOOP)
	{
		if(popen->LockCnt < popen->locktime) 			//LOCK
		{
			static s32 iq_ref_temp = 0;

			if (popen->LockCnt == 0)
				iq_ref_temp = 0;
			
			popen->LockCnt++;
			
//			if( FOCVars.Vqd.q > 0)       //��ת
//				iq_ref_temp += inc_iq;
//			else if(FOCVars.Vqd.q < 0)   //��ת
//				iq_ref_temp -= inc_iq;
//			else                         //ֹͣ  
//				iq_ref_temp = 0;
			iq_ref_temp += popen->inc_iq;
			
			FOCVars.Iqdref.q = iq_ref_temp >> 15;
		}
		else if(popen->Angle < popen->ramp_time) 			//SPEED RAMP
		{
			if (popen->Angle == 0)
			{	
				//FOCVars.Vqd.q = popen->start_vq * 32767 ;
				FOCVars.Vqd.q = popen->start_vq ;
				FOCVars.Vqd.d = 0 ;
			}
			
			popen->Angle += popen->delta_startup_ramp;		
			
			if( FOCVars.Vqd.q > 0)       //正转
				FOCVars.hElAngle += (popen->Angle >> 16);
			else if(FOCVars.Vqd.q < 0)   //反转
				FOCVars.hElAngle -= (popen->Angle >> 16);		
		}
		else
		{
			popen->State = CLOSE_LOOP;
//#ifndef NDEBUG
//			OpenLoopSpeed = STO_Get_Speed();	// for test only
//#endif
			#if 0  //just for test,openloop for observation angle
			popen->speed_loop_enable = FALSE;
			popen->current_loop_enable = FALSE;
			#else
			popen->speed_loop_enable = TRUE;
			popen->current_loop_enable = TRUE;
			#endif

			popen->ElangleError = STO_Get_Electrical_Angle(pHandle) - FOCVars.hElAngle;
			//FOCVars.hElAngle = STO_Get_Electrical_Angle(pHandle);
		}
		
	}
	else if(popen->State == CLOSE_LOOP)
	{
    FOCVars.hElAngle = STO_Get_Electrical_Angle(pHandle) - popen->ElangleError;
//		FOCVars.hElAngle = STO_Get_Electrical_Angle(pHandle) - (popen->ElangleError>>2);
//		//s16 err = popen->ElangleError>>2;
//		if(popen->ElangleError > 0)
//			popen->ElangleError--;
//		else if(popen->ElangleError < 0)
//			popen->ElangleError++;

	}	
}

/**
* @brief 初始化电机控制器参数
* @param ploop 指向mc_openloop_t结构体的指针,用于存储控制器的状态信息
* @return 无返回值
*/
void mc_parameter_init(mc_openloop_t *ploop)
{
  ploop->State = OPEN_LOOP;     //开环启动
	ploop->Angle = 0;           //如等于RAMP_TIME就意味着跳过RAMP阶段,直接速度闭环
	ploop->LockCnt = 0;
	
	ploop->speed_loop_enable = FALSE;  
	ploop->current_loop_enable = FALSE;
}

/**
* @brief 设置电机控制器的中间变量
* @param pfoc 指向FOCVars_t结构体的指针,用于存储电机控制器的中间变量
* @param piqref 输入的iq参考值
* @return 无返回值
*/
void mc_set_vf_iqRef(FOCVars_t *pfoc,int16_t piqref)
{
   pfoc->Iqdref.q = piqref;
	 pfoc->Iqdref.d = 0;
}

/**
* @brief 获取电机控制器的状态
* @param ploop 指向mc_openloop_t结构体的指针,用于存储控制器的状态信息
* @return 返回控制器的状态
*/
u16 mc_get_state(mc_openloop_t *ploop)
{
   return (ploop->State);
}

/**
* @brief 获取电机控制器是否启用速度环
* @param ploop 指向mc_openloop_t结构体的指针,用于存储控制器的状态信息
* @return 返回true或false,表示是否启用速度环
*/
bool_t mc_get_speed_loop_enable(mc_openloop_t *ploop)
{
   return (ploop->speed_loop_enable);
}

/**
* @brief 设置电机控制器是否启用速度环
* @param ploop 指向mc_openloop_t结构体的指针,用于存储控制器的状态信息
* @param state 设置为true或false,表示是否启用速度环
* @return 无返回值
*/
void mc_set_speed_loop_enable(mc_openloop_t *ploop,bool_t state)
{
   ploop->speed_loop_enable = state;
}

/**
* @brief 获取电机控制器是否启用电流环
* @param ploop 指向mc_openloop_t结构体的指针,用于存储控制器的状态信息
* @return 返回true或false,表示是否启用电流环
*/
bool_t mc_get_current_loop_enable(mc_openloop_t *ploop)
{
   return (ploop->current_loop_enable);
}

/**
* @brief 设置电机控制器是否启用电流环
* @param ploop 指向mc_openloop_t结构体的指针,用于存储控制器的状态信息
* @param state 设置为true或false,表示是否启用电流环
* @return 无返回值
*/
void mc_set_current_loop_enable(mc_openloop_t *ploop,bool_t state)
{
   ploop->current_loop_enable = state;
}


/**** END OF FILE ****/

3.3 初始化及函数调用

定义全局变量:

STO_luenberger        STO_LBG;     //龙伯格观测器相关变量
mc_openloop_t         mc_openloop; //三段式启动相关变量

3.3.1 初始化

当编码器类型为ENCODER_TYPE_UNKNOWN时为无感运行模式:

if(sensor_peripheral.Encoder_Sensor.encType == ENCODER_TYPE_UNKNOWN)//just for sensorless
	{
		sensor_peripheral.Encoder_Sensor.encRes=65535;
			/* init Luenberger parameter */
	  STO_Parameter_t Parameter={
	     .Rs = 55,                                         //0.055 pMotorParSet.tBasePar.resist[A_AXIS]
		   .Rs_factor = 1000,
		   .Ls = 21,                                         //2.1e-4 pMotorParSet.tBasePar.inductance[A_AXIS]
		   .Ls_factor = 100000,
		   .Pole = pMotorParSet.tBasePar.poles[A_AXIS],      //4
		   .pwm_frequency = SAMPLE_FREQUENCY,                //10000
		   //.max_speed_rpm = pMotorParSet.tBasePar.ratedVel[A_AXIS]*60/sensor_peripheral.Encoder_Sensor.encRes,//rpm
			 .max_speed_rpm = 3000,//rpm
		   .max_voltage = (s16)(ProtectPar.regenOn/1000),           //36000 mV
		   //.max_current = pMotorParSet.tBasePar.maxPhaseCurr[A_AXIS]/1000,  //A
			 .max_current = 31,                                //A
		   .motor_voltage_constant = 4,                      //4v/1000rpm
		   .motor_voltage_constant_factor = 1,
	  };
		memcpy(&STO_LBG.STO_Parameter,&Parameter,sizeof(STO_Parameter_t));
		STO_Init(&STO_LBG);
	  STO_Set_k1k2(&STO_LBG,-24225,25925);
	  STO_Gains_Init(&STO_LBG);
    STO_PLL_Set_Gains(&STO_LBG,638,45);  
			
		mc_openloop_t   openloop={
		  .State= IDLE_STATE,
			.Angle = 0,
			.LockCnt = 0,
			.pole = pMotorParSet.tBasePar.poles[A_AXIS],
			.pwm_frequency = SAMPLE_FREQUENCY,
			.looptimeinsec = 1/(float)SAMPLE_FREQUENCY,
			.locktime = SAMPLES_PER_50MSECOND,
			.start_iq = 0,             //Q轴启动电流
			.start_iq_max = 3000,      //mA
			.endSpeedOpenloop = 300,   //rpm
			.start_vq = 4000,         //VF启动电压
		};
		memcpy(&mc_openloop,&openloop,sizeof(mc_openloop_t));
		mc_statemachine_init(&mc_openloop);
	}

3.3.2 反馈速度处理

在这里插入图片描述

void AxisVelocityCalc()
{

	float	ftempll;	
	
	if(sensor_peripheral.Encoder_Sensor.encType != ENCODER_TYPE_UNKNOWN)
	{
	   	pAxisPar.vel[A_AXIS][2] = sensor_peripheral.Encoder_Sensor.deltaPos * SAMPLE_FREQUENCY; //TODO: 
	    ftempll = (float) pAxisPar.vel[A_AXIS][2];
	    
	    ftempll =_filterPar._velFdk(&ftempll,&_filterPar);//250 point  1.5us
	    pAxisPar.vel[A_AXIS][1] = (long) ftempll;
	    pAxisPar.vel[A_AXIS][0] = pAxisPar.vel[A_AXIS][1];
	}else
	{
		  pAxisPar.vel[A_AXIS][2] = STO_Get_Speed(&STO_LBG)*sensor_peripheral.Encoder_Sensor.encRes/(pMotorParSet.tBasePar.poles[A_AXIS] * 2 * PI);//we->rpm->plus; //TODO: 
	    ftempll = (float) pAxisPar.vel[A_AXIS][2];
	    
	    ftempll =_filterPar._velFdk(&ftempll,&_filterPar);//250 point  1.5us
	    pAxisPar.vel[A_AXIS][1] = (long) ftempll;
	    pAxisPar.vel[A_AXIS][0] = pAxisPar.vel[A_AXIS][1];
	
	}
}

3.3.3 FOC模块处理

/**
  * @brief  FOC function
	* @param  None
  * @retval None
**/
void FOC_Model(void)
{
    FOCVars.Iqdref.q = pMotorParSet.currRef[A_AXIS];//*1.414; // RMS result
    FOCVars.Iqdref.d = 0;
//    FOC_Cal(&FOCVars);
		FOCVars.Ialphabeta = Clark(FOCVars.Iab);
		FOCVars.Iqd = Park(FOCVars.Ialphabeta, FOCVars.hElAngle);	

		FOCVars.IqdErr.d = FOCVars.Iqdref.d - FOCVars.Iqd.d;
		FOCVars.IqdErr.q = FOCVars.Iqdref.q - FOCVars.Iqd.q;
		
	  if(sensor_peripheral.Encoder_Sensor.encType != ENCODER_TYPE_UNKNOWN)
		{
				FOCVars.Vqd.d = PI_Controller(&PidIdHandle, FOCVars.IqdErr.d);
		
		    PidIqHandle.hKpGain = PidIdHandle.hKpGain;
		    PidIqHandle.hKiGain = PidIdHandle.hKiGain;
		    FOCVars.Vqd.q = PI_Controller(&PidIqHandle, FOCVars.IqdErr.q);
		}else
		{
			  if(mc_get_current_loop_enable(&mc_openloop) == TRUE)
				{
				    FOCVars.Vqd.d = PI_Controller(&PidIdHandle, FOCVars.IqdErr.d);
				    
		        PidIqHandle.hKpGain = PidIdHandle.hKpGain;
		        PidIqHandle.hKiGain = PidIdHandle.hKiGain;
		        FOCVars.Vqd.q = PI_Controller(&PidIqHandle, FOCVars.IqdErr.q);
				}
		
				//mc_statemachine_process(&mc_openloop,&STO_LBG,&FOCVars,sensor_peripheral.pVbusPar.glVBus);//放在这里主要是可以重置FOCVars.Vqd.q
				mc_statemachine_process(&mc_openloop,&STO_LBG,&FOCVars,24000);//放在这里主要是可以重置FOCVars.Vqd.q
		}


#if 1
	  //STO_CalcElAngle(&FOCVars,sensor_peripheral.pVbusPar.glVBus);
	  glDebugTestD[12] = STO_Get_Speed(&STO_LBG)*sensor_peripheral.Encoder_Sensor.encRes/(pMotorParSet.tBasePar.poles[A_AXIS] * 2 * PI);//we->rpm->plus
    glDebugTestD[13] = STO_Get_Electrical_Angle(&STO_LBG);
    glDebugTestD[16] = FOCVars.hElAngle;
#endif
	  
		FOCVars.Vqd = Circle_LimitationFunc(&FOCVars.CircleLimitationFoc, FOCVars.Vqd); //340 point
		FOCVars.Valphabeta = Rev_Park(FOCVars.Vqd,  FOCVars.hElAngle);								//TODO: USING COSA COSB  calc infront.....
		FOCVars.DutyCycle = SVPWM_3ShuntCalcDutyCycles(&FOCVars);						
		
    pMotorParSet.va[A_AXIS] = MID_PWM_CLK_PRD - FOCVars.DutyCycle.CntPhA;
    pMotorParSet.vb[A_AXIS] = MID_PWM_CLK_PRD - FOCVars.DutyCycle.CntPhB;
    pMotorParSet.vc[A_AXIS] = MID_PWM_CLK_PRD - FOCVars.DutyCycle.CntPhC;
}

实际效果(约100rpm)
在这里插入图片描述
目前代码还有优化空间:实现正反转(反转先降速切开环,反向开环拖动,最后切闭环)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1478200.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis---持久化

Redis是内存数据库&#xff0c;是把数据存储在内存中的&#xff0c;但是内存中的数据不是持久的&#xff0c;如果想要做到持久&#xff0c;那么就需要让redis将数据存储到硬盘上。 Redis持久化有两种策略&#xff1a; RDB > Redis DataBase RDB机制采取的是定期备份AOF …

Kaggle 竞赛入门

打比赛不用写算法源码&#xff0c;应用的时候不用自己写。学习的时候可以自己写。 Kaggle 竞赛入门 认识 Kaggle 平台Kaggle竞赛知识前提结构化数据前提图像数据文本数据 Kaggle竞赛套路一个赛题的完整流程 认识 Kaggle 平台 Kaggle 官网 主页&#xff0c;比赛&#xff08;数据…

Linux系统Docker部署Nexus Maven并实现远程访问本地管理界面

文章目录 1. Docker安装Nexus2. 本地访问Nexus3. Linux安装Cpolar4. 配置Nexus界面公网地址5. 远程访问 Nexus界面6. 固定Nexus公网地址7. 固定地址访问Nexus Nexus是一个仓库管理工具&#xff0c;用于管理和组织软件构建过程中的依赖项和构件。它与Maven密切相关&#xff0c;可…

计算机网络原理--传输层

&#x1f3a5; 个人主页&#xff1a;Dikz12&#x1f4d5;格言&#xff1a;那些在暗处执拗生长的花&#xff0c;终有一日会馥郁传香欢迎大家&#x1f44d;点赞✍评论⭐收藏 目录 TCP/IP五层&#xff08;或四层&#xff09;模型 传输层 TCP和UDP的区别 UDP协议 校验和 如何…

配置前端项目到 github-pages

Quickstart for GitHub Pages - GitHub Docs

腾讯云优惠:2024云服务器租用价格表,买前必看

一张表看懂腾讯云服务器租用优惠价格表&#xff0c;一目了然&#xff0c;腾讯云服务器分为轻量应用服务器和云服务器CVM&#xff0c;CPU内存配置从2核2G、2核4G、4核8G、8核16G、4核16G、8核32G、16核32G、16核64等配置可选&#xff0c;公网带宽1M、3M、5M、12M、18M、22M、28M…

LINUX基础培训二十五之shell表达式与运算

一、条件表达式 条件表达式是用于判断条件是否满足的逻辑表达式&#xff0c;当条件为真&#xff0c;返回0&#xff0c;否则返回1。 常用语法&#xff1a; 1、test 测试表达式 2、[ 测试表达式 ] #两边需要有空格 3、[[ 测试表达式 ]] 4、(( 测试表达式 )) 第一种和第二种是等…

鸿蒙这么大声势,为何迟迟看不见岗位?最新数据来了

对于鸿蒙生态建设而言&#xff0c;2024年可谓至关重要&#xff0c;而生态建设的前提&#xff0c;就是要有足够的开发人才。与之对应的&#xff0c;今年春招市场上与鸿蒙相关岗位和人才旺盛的热度&#xff0c;一方面反应了鸿蒙生态的逐渐壮大&#xff0c;另一方面也让人们对鸿蒙…

Tomcat源码解析(二): Bootstrap和Catalina

Tomcat源码系列文章 Tomcat源码解析(一)&#xff1a; Tomcat整体架构 Tomcat源码解析(二)&#xff1a; Bootstrap和Catalina 目录 一、基础组件1、Lifecycle生命周期顶级接口2、组件的默认实现 二、启动类Bootstrap1、main2、init3、load与start 三、加载Catalina1、load2、s…

2024腾讯云优惠券免费领取_代金券查询和使用方法

腾讯云代金券领取渠道有哪些&#xff1f;腾讯云官网可以领取、官方媒体账号可以领取代金券、完成任务可以领取代金券&#xff0c;大家也可以在腾讯云百科蹲守代金券&#xff0c;因为腾讯云代金券领取渠道比较分散&#xff0c;腾讯云百科txybk.com专注汇总优惠代金券领取页面&am…

工厂模式 详解 设计模式

工厂模式 其主要目的是封装对象的创建过程&#xff0c;使客户端代码和具体的对象实现解耦。这样子就不用每次都new对象&#xff0c;更换对象的话&#xff0c;所有new对象的地方也要修改&#xff0c;违背了开闭原则&#xff08;对扩展开放&#xff0c;对修改关闭&#xff09;。…

spring6学习笔记

1.环境准备 1.idea建立一个空项目&#xff0c;jdk要求是17 2.Maven配置&#xff08;和mybatis里一样&#xff09; 3.新建一个模块 2.ocp原则 3.依赖倒置原则&#xff08;DIP&#xff09; 什么是依赖倒置原则? 1.面向接口编程&#xff0c;面向抽象编程&#xff0c;不要面向…

Windows安装VNC连接工具并结合cpolar实现远程内网Ubuntu系统桌面

文章目录 前言1. ubuntu安装VNC2. 设置vnc开机启动3. windows 安装VNC viewer连接工具4. 内网穿透4.1 安装cpolar【支持使用一键脚本命令安装】4.2 创建隧道映射4.3 测试公网远程访问 5. 配置固定TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址5.3 测试…

回溯【基础算法精讲 14】

视频地址 : 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 基本概念 1 . 例子 例如从abc和def(n 2)中各选出一个组成新的字符串? 如果n很大 , 这个时候for循环的表达能力有限 ; 2 . 原问题 和 子问题 3 . 增量构造答案 这个增量构造答案的过程就是回溯…

java之Bean对象

1. 什么是Bean&#xff1f; Bean被实例化的&#xff0c;是被Spring框架所管理的Java对象。 Spring容器会自动完成Bean的实例化。将所创建的的Bean自动注入到Ioc容器中以供调用。 spring框架中 IOC容器中管理的对象就是Bean对象 2. 第三方bean Bean 因为第三方bean&#xff0…

SQL函数学习记录

聚合函数 函数是编程语言的基础之一&#xff0c;在对数字的运算中&#xff0c;我们用的最多的就是聚合函数&#xff0c;本篇接下来就详细阐述下SQL中聚合函数的运用。 什么是聚合函数&#xff08;aggregate function&#xff09;&#xff1f; 聚合函数指的是对一组值执行计算…

手撕LRU缓存——LinkedHashMap简易源码

题目链接&#xff1a;https://leetcode.cn/problems/lru-cache/description/?envTypestudy-plan-v2&envIdtop-100-liked 原理非常简单&#xff0c;一个双端链表配上一个hash表。 首先我们要知道什么是LRU就是最小使用淘汰。怎么淘汰&#xff0c;链表尾部就是最不常用的直接…

92、评估代码生成操作带来的性能提升

本节评估一下,通过代码生成操作之后,对于模型的性能提升。 评估下性能 在相同的环境下,分别运行 4th_no_malloc 和 5th_codegen 下的 compile.sh 脚本进行代码编译,然后运行编译后生成的可执行文件 ./resnet。 可以分别获取到权值预加载前后的性能指标。 注意:不同电脑机…

可视化图文报表

Apache Echarts介绍 Apache Echarts是一款基于Javascript的数据可视化图表库&#xff0c;提供直观&#xff0c;生动&#xff0c;可交互&#xff0c;可个性化定制的数据可视化图表。 官网&#xff1a;Apache ECharts 入门案例&#xff1a; <!DOCTYPE html> <html>…

Git教程-Git的基本使用

Git是一个强大的分布式版本控制系统&#xff0c;它不仅用于跟踪代码的变化&#xff0c;还能够协调多个开发者之间的工作。在软件开发过程中&#xff0c;Git被广泛应用于协作开发、版本管理和代码追踪等方面。以下是一个详细的Git教程&#xff0c;我们将深入探讨Git的基本概念和…