大数据毕业设计—基于Python旅游数据采集可视化分析推荐系统(完整系统源码+数据库+详细文档+全源码解析)

news2025/7/19 19:14:18

文章目录

  • 基于Python旅游数据采集可视化分析推荐系统(完整系统源码+数据库+详细文档+全源码解析)
    • 源码获取方式在文章末尾
    • 源码获取方式在文章末尾
    • 一、项目概述
    • 二、项目说明
    • 三、开发环境
    • 四、功能实现
    • 五、系统页面实现
      • 用户登录注册
      • 系统首页
      • 数据操作管理
      • 价格与销量分析
      • 旅游城市和景点等级分析
      • 旅游数据评分情况分析
      • 旅游数据评论情况分析
      • 旅游景点推荐
      • Django系统后台管理
    • 六、源码获取

基于Python旅游数据采集可视化分析推荐系统(完整系统源码+数据库+详细文档+全源码解析)

源码获取方式在文章末尾

源码获取方式在文章末尾

一、项目概述

在互联网时代,各行各业的人们都在寻求增长点,人们的日常生活越来越离不开互联网。以旅游信息为例,线下大量的各种旅游信息基本只会出现在旅游会上,但是现如今,人们越来越重视时间成本,所以越来越多的年轻人在网上查找自己想要查找的旅游就业信息。然而,在互联网信息和海量数据源混合的情况下,如何快速精确的找到自己想要的数据是一个值得探讨的问题。

本系统主要针对解决获取旅游信息滞后、参加线下旅行社和人工检索时间成本高等问题,运用网络爬虫信息技术设计思想,实现了一个基于Python的旅游信息推荐系统。本系统以Python语言为基础,使用 requests爬虫对去哪儿旅游信息源进行抓取,针对网页信息编写抽取规则,对旅游信息进行必要的过滤和提取,使用MySql对旅游信息进行数据存储。然后使用 Python 开源web框架 Django进行系统搭建,基于旅游信息采用机器学习协同过滤推荐算法完成对用户的旅游信息推荐,完成整个爬取以及数据检索到成功进行旅游推荐的网页端操作展示。

二、项目说明

基于python旅游采集数据分析可视化推荐系统是基于Django框架开发的一个旅游信息采集和推荐的应用。该系统通过爬虫技术从各个旅游网站抓取旅游信息,并利用推荐算法对用户进行个性化推荐,同时提供可视化展示界面。

以下是该系统的主要功能和组成部分的介绍:

旅游信息采集:系统通过编写爬虫程序,定期从各大旅游网站抓取旅游景点、酒店、机票等相关信息,包括价格、评价、位置等。这些采集到的数据会被保存到数据库中供后续使用。

用户注册与登录:用户可以注册自己的账号,并通过登录来获取个性化推荐和享受更多功能。

个性化推荐:系统会根据用户的历史浏览记录、收藏记录以及其他行为数据,利用推荐算法生成个性化推荐结果。推荐算法使用协同过滤、内容过滤方法,根据用户的兴趣和偏好为其推荐最相关的旅游信息。

可视化展示界面:系统会将采集的旅游信息以可视化方式展示给用户,包括地图标记、图片展示、价格对比等功能。用户可以通过地图选择感兴趣的地区,查看该地区的旅游景点、酒店等信息。

用户交互和反馈:系统提供用户评价、评论和收藏等功能,用户可以对自己的旅游经历进行评价,同时也可以保存自己喜欢的旅游信息以便日后查看。

后台管理:系统提供一个后台管理界面,管理员可以对用户信息、采集的数据、推荐算法参数等进行管理和配置。

三、开发环境

开发环境版本/工具
PYTHON3.9.0
开发工具PyCharm2021.2.1
操作系统Windows 10
内存要求16GB
浏览器Firefox
数据库MySQL 8.0.26
数据库工具Navicat 15 for MySQL
项目技术栈Python语言、Django框架、MySQL数据库、requests网络爬虫技术、机器学习算法、BootStrap、数据可视化

四、功能实现

系统爬虫部分核心代码

  def spiderMain(self,resp,province):
        respJSON = resp.json()['data']['sightList']
        for index,travel in enumerate(respJSON):
            print('正在爬取该页第%s数据' % str(index + 1))
            time.sleep(2)
            detailAddress = travel['address']
            discount = travel['discount']
            shortIntro = travel['intro']
            price = travel['qunarPrice']
            saleCount = travel['saleCount']
            try:
                level = travel['star'] + '景区'
            except:
                level = '未评价'
            title = travel['sightName']
            cover = travel['sightImgURL']
            sightId = travel['sightId']
            # ================================= 详情爬取
            detailUrl = self.detailUrl % sightId
            respDetailXpath = etree.HTML(self.send_request(detailUrl).text)
            score = respDetailXpath.xpath('//span[@id="mp-description-commentscore"]/span/text()')
            if not score:
                score = 0
                star = 0
            else:
                score = score[0]
                star = int(float(score)*10)
            commentsTotal = respDetailXpath.xpath('//span[@class="mp-description-commentCount"]/a/text()')[0].replace('条评论','')
            detailIntro = respDetailXpath.xpath('//div[@class="mp-charact-intro"]//p/text()')[0]
            img_list = respDetailXpath.xpath('//div[@class="mp-description-image"]/img/@src')[:6]
            # ================================= 评论爬取
            commentSightId = respDetailXpath.xpath('//div[@class="mp-tickets-new"]/@data-sightid')[0]
            commentsUrl = self.commentUrl % commentSightId
            comments = []
            try:
                commentsList = self.send_request(commentsUrl).json()['data']['commentList']
                for c in commentsList:
                    if c['content'] != '用户未点评,系统默认好评。':
                        author = c['author']
                        content = c['content']
                        date = c['date']
                        score = c['score']
                        comments.append({
                            'author': author,
                            'content': content,
                            'date': date,
                            'score': score
                        })
            except:
                comments = []

            resultData = []

在这里插入图片描述

基于用户的协同过滤推荐算法,用于根据用户的评分数据推荐其可能喜欢的其他景点。

基于用户的协同过滤算法部分核心代码:

在这里插入图片描述

def user_bases_collaborative_filtering(user_id,user_ratings,top_n=20):
# def user_bases_collaborative_filtering(user_id, user_ratings, top_n=3):
    # 获取目标用户的评分数据
    target_user_ratings = user_ratings[user_id]

    # 初始化一个字段,用于保存其他用户与目标用户的相似度得分
    user_similarity_scores = {}

    # 将目标用户的评分转化为numpy数组
    target_user_ratings_list = np.array([
        rating for _ , rating in target_user_ratings.items()
    ])

    # 计算目标用户与其他用户之间的相似度得分
    for user,ratings in user_ratings.items():
        if user == user_id:
            continue
        # 将其他用户的评分转化为numpy数组
        user_ratings_list = np.array([ratings.get(item,0) for item in target_user_ratings])
        # 计算余弦相似度
        similarity_score = cosine_similarity([user_ratings_list],[target_user_ratings_list])[0][0]
        user_similarity_scores[user] = similarity_score

    # 对用户相似度得分进行降序排序
    sorted_similar_user = sorted(user_similarity_scores.items(),key=lambda x:x[1],reverse=True)

    # 选择 TOP N 个相似用户喜欢的景点 作为推荐结果
    recommended_items = set()
    for similar_user,_ in sorted_similar_user[:top_n]:
        recommended_items.update(user_ratings[similar_user].keys())

    # 过滤掉目标用户已经评分过的景点
    recommended_items = [item for item in recommended_items if item not in target_user_ratings]

    return recommended_items
  1. user_bases_collaborative_filtering 函数接受三个参数:
    • user_id: 目标用户的ID。
    • user_ratings: 包含用户评分信息的字典,其中键是用户ID,值是包含景点及其评分的字典。
    • top_n: 选择推荐结果的前N个景点,默认为20。
  2. target_user_ratings = user_ratings[user_id]:获取目标用户的评分数据,即目标用户对各个景点的评分。
  3. user_similarity_scores = {}:初始化一个空字典,用于保存其他用户与目标用户的相似度得分。
  4. target_user_ratings_list = np.array([...]):将目标用户的评分转换为 NumPy 数组,以便后续计算余弦相似度。
  5. 遍历 user_ratings 中的每个用户,计算目标用户与其他用户之间的相似度得分:
    • 将其他用户的评分转化为 NumPy 数组。
    • 使用余弦相似度计算两个用户之间的相似度得分。
    • 将相似度得分存储在 user_similarity_scores 字典中。
  6. sorted_similar_user = sorted(user_similarity_scores.items(),key=lambda x:x[1],reverse=True):对用户相似度得分进行降序排序,得到一个包含用户ID和相似度得分的元组列表。
  7. recommended_items = set():初始化一个集合,用于保存推荐的景点。
  8. 遍历排序后的相似用户列表,选择前 top_n 个相似用户喜欢的景点,将这些景点添加到 recommended_items 集合中。
  9. recommended_items = [item for item in recommended_items if item not in target_user_ratings]:过滤掉目标用户已经评分过的景点,得到最终的推荐结果。
  10. 返回 recommended_items,即推荐给目标用户的景点列表。

这个函数接受目标用户ID、用户评分字典以及要返回的推荐结果数量作为参数。它计算目标用户与其他用户的相似度得分,然后选择相似度最高的用户喜欢的景点作为推荐结果。

– 获取目标用户的评分数据

– 初始化一个字典,用于保存其他用户与目标用户的相似度得分

– 将目标用户的评分转化为numpy数组

– 计算目标用户与其他用户之间的相似度得分(余弦相似度)

– 对用户相似度得分进行降序排序

– 选择TOP N个相似用户喜欢的景点作为推荐结果

– 过滤掉目标用户已经评分过的景点

五、系统页面实现

启动项目,在终端窗口输入命令,这里我设置的端口在8091:

python manage.py runserver 8091

在这里插入图片描述

用户登录注册

在这里插入图片描述

系统首页

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

数据操作管理

在这里插入图片描述

价格与销量分析

在这里插入图片描述

旅游城市和景点等级分析

在这里插入图片描述

旅游数据评分情况分析

在这里插入图片描述

旅游数据评论情况分析

在这里插入图片描述

旅游景点推荐

在这里插入图片描述

Django系统后台管理

http://127.0.0.1:8091/admin

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

六、源码获取

完整系统源码+数据库+详细文档+全源码解析等资料获取扫码领取
完整系统源码+数据库+详细文档+全源码解析等资料获取扫码领取
完整系统源码+数据库+详细文档+全源码解析等资料获取扫码领取
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1477962.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

机试指南:Ch5:线性数据结构 Ch6:递归与分治

文章目录 第5章 线性数据结构1.向量 vector2.队列 queue(1)队列的特点、应用(2)基本操作(3)例题例题1:约瑟夫问题2 (难度:中等) (4)习题习题1:排队打饭 (难度:中等) 3.栈 stack(1)栈…

jsjiami.v7关于js加密运行环境的探索

浏览器环境、Node.js 环境和 vm2 环境之间存在一些区别,包括全局对象、核心模块和一些环境特定的 API。下面是一些区别的简要概述,以及一些代码示例来突显它们之间的不同。 1. 浏览器环境: 全局对象: 浏览器环境: 全…

加速AI测试领域的进化,顶尖专家与名校教授强强联合,助你快速成为人工智能测试领域的精英

随着人工智能在各行各业的广泛应用,学习并掌握AI技术在软件测试中的应用变得至关重要。不仅能使你跟上行业的发展趋势,还能提升你的竞争力。而且,市场对具备AI测试技能的测试工程师的需求正日益增长,这使得掌握这些技能能够帮助你…

Linux网络编程(四-TCP协议)

目录 一、TCP概念 二、TCP的首部格式 三、TCP可靠传输机制 3.1 确认应答机制 3.2 超时重传机制 3.3 连接管理 3.3.1 三次握手 3.3.2 四次挥手 3.4 流量控制 3.5 拥塞控制 四、TCP效率机制 4.1 滑动窗口 4.2 重发控制 4.3 延迟应答 4.4 捎带应答 五、TCP的…

【Linux C | 网络编程】gethostbyname 函数详解及C语言例子

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…

【Java程序设计】【C00323】基于Springboot的高校科研信息管理系统(有论文)

基于Springboot的高校科研信息管理系统(有论文) 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的高校科研信息管理系统,本系统有管理员、学校管理员、科研人员三种角色; 管理员:首页、个…

企业数字化转型的第一步:由被动多云向主动多云转变

随着经济环境、市场形势、技术发展、用户需求等诸多因素的变化,数字化转型为企业进一步提升效率和竞争力、提供更加丰富的个性化产品和服务、进行业务场景创新、探寻新的增长机会和运营模式提供了崭新的途径。越来越多的企业意识到,数字化转型已不是企业…

数据仓库与数据挖掘概述

目录 一、数据仓库概述 (一)从传统数据库到数据仓库 (二)数据仓库的4个特征 (三)数据仓库系统 (四)数据仓库系统体系结构 (五)数据仓库数据的粒度与组织…

机器人内部传感器阅读梳理及心得-速度传感器-数字式速度传感器

在机器人控制系统中,增量式编码器既可以作为位置传感器测量关节相对位置,又可作为速度传感器测量关节速度。当作为速度传感器时,既可以在模拟量方式下使用,又可以在数字量方式下使用。 模拟式方法 在这种方式下,需要…

day02_前后端环境搭建(前端工程搭建,登录功能说明,后端项目搭建)

文章目录 1. 软件开发介绍1.1 软件开发流程1.2 角色分工1.3 软件环境1.4 系统的分类 2. 尚品甄选项目介绍2.1 电商基本概念2.1.1 电商简介2.1.2 电商模式B2BB2CB2B2CC2BC2CO2O 2.2 业务功能介绍2.3 系统架构介绍2.4 前后端分离开发 3. 前端工程搭建3.1 Element-Admin简介3.2 El…

django框架不调试下会被达出史(sql查询次数,消耗时间)

1:使用pycharm编辑器里面 2:安装django-debug-toolbar 3:进行调试查询 https django框架调试,各个面板查询消耗时间,pycharm,debug 1:settings.py INSTALLED_APPS列表中添加 INSTALLED_APPS [# 使用多合一有点慢# multi_captcha_admin,# 多合一验证码i…

Git安装的一些步骤解说(小白好奇心严重版本)

Use bundled OpenSSH 安装 Git 时,您面临的选择是使用 Git 自带的 SSH 客户端(bundled OpenSSH)还是使用系统上已安装的外部 SSH 客户端(external OpenSSH)。以下是两个选项的一些考虑因素: 使用 Git 自带的…

2/29作业

typedef int datatype; typedef struct link_list { union { int len; datatype data; }; struct link_list *next; }link_list,*link_p; #include "link_list.h" int main(int argc,const char *argv[]) { //创建链表并填入数据 …

阿里云服务器大降价20%,简单拥有五年三台2h4gECS,组建公网集群

要在阿里云ECS上组建集群,您可以按照以下步骤进行操作: 创建ECS实例:登录阿里云控制台,选择ECS实例,点击“创建实例”按钮。根据实际需求选择实例的配置参数,例如实例规格、操作系统、网络等。根据需要选择…

Spring Boot Profiles简单介绍

Spring Boot application.properties和application.yml文件的配置 阅读本文之前,请先阅读上面的配置文件介绍。 Spring Boot Profiles是一个用于区分不同环境下配置的强大功能。以下是如何在Spring Boot应用程序中使用Profiles的详细步骤和代码示例。 1. 创…

buuctf_web_loveSQL

题目: 上面有行小红字,“用 sqlmap 是没有灵魂的”,呵呵。。嗯,确实 啥也憋说,先上万能钥匙: a or 11 # a’ or 11 # a" or 11 # 尝试后的结果,可以发现该SQL验证是单引号,a or 11 #注入过…

预训练大模型LLM的PEFT之—— Prefix Tuning

简介 Prefix Tuning是2021.01提出来的,在它之前,我们使用prompt主要是人工设计模板或者自动化搜索模板,也就是prompt范式的第一阶段,就是在输入上加上prompt文本,再对输出进行映射。这种离散模板对模型的鲁棒性很差。…

【YOLO v5 v7 v8 小目标改进】RFB:组合不同大小的卷积核和扩张卷积来模拟人类视觉感受野的多尺度特性

RFB:组合不同大小的卷积核和扩张卷积来模拟人类视觉感受野的多尺度特性 提出背景RFB 原理空间感受野结构RFB-Net 小目标涨点YOLO v5 魔改YOLO v7 魔改YOLO v8 魔改 提出背景 当前表现最好的目标检测器依赖于深层CNN骨干网络,如ResNet-101和Inception&am…

qt5与qt6的cmake区别

文章目录 使用cmake构建qt项目,坑很多。一是本身就麻烦,二是,确实坑,因为不同的qtcreator版本,选了不同的kits(套件) 生成的CMakeList.txt文件也不一样。 如果可以的话都选择Qt6的相关选项&…

【C++】认识类和对象

🔥博客主页: 小羊失眠啦. 🎥系列专栏:《C语言》 《数据结构》 《C》 《Linux》 《Cpolar》 ❤️感谢大家点赞👍收藏⭐评论✍️ 文章目录 一、什么是面向对象?二、类的引入三、类的定义四、类的访问限定符与…