解析Hadoop三大核心组件:HDFS、MapReduce和YARN

news2025/7/10 21:20:21

目录

  • Hadoop
    • Hadoop的优势
  • Hadoop的组成
    • HDFS架构设计
    • Yarn架构设计
    • MapReduce架构设计
  • 总结

在大数据时代,Hadoop作为一种开源的分布式计算框架,已经成为处理大规模数据的首选工具。它采用了分布式存储和计算的方式,能够高效地处理海量数据。Hadoop的核心由三大组件组成:HDFS、MapReduce和YARN。本文将为您逐一介绍这三个组件。

Hadoop

Hadoop是一个开源的分布式计算和存储框架,主要解决海量数据的存储和海量数据的分析计算。

Hadoop的优势

  1. 高可扩展性:Hadoop可以轻松地扩展到大规模集群,并处理大量的数据。它采用分布式计算的方式,将工作负载分布在集群中的多个节点上,使得系统能够处理海量的数据和高并发请求。

  2. 高容错性:Hadoop具有高度的容错能力,即使在设备或任务发生故障的情况下,也能保持数据的完整性和系统的可用性。它通过数据的冗余复制和自动故障转移等机制,确保数据的安全和系统的稳定性。

  3. 高效性:通过并行处理和分布式计算,Hadoop能够实现快速的数据处理。它可以将大规模的数据分解为小的任务并在多个节点上并行执行,从而提高处理效率和速度。

  4. 处理多种数据类型:Hadoop可以处理各种类型的数据,包括结构化数据、半结构化数据和非结构化数据。它能够灵活地存储和处理数据,支持分布式存储和处理大规模的文本、图像、音频、视频等数据类型。

  5. 异构性:Hadoop支持不同类型的硬件和操作系统,并且能够与其他开源工具和框架无缝集成。它提供了统一的接口和API,使得用户可以用各种编程语言编写应用程序,并在Hadoop上运行。

  6. 成本效益:相比于传统的数据存储和处理方式,Hadoop具有较低的成本。它使用商业化的廉价硬件,可以通过纵向和横向扩展实现高性能和高可用性,降低了硬件和软件成本。


Hadoop的组成

HDFS架构设计

Hadoop分布式文件系统(Hadoop Distributed File System,HDFS)是Hadoop生态系统中的一个重要组成部分,是用于存储和处理大数据的分布式文件系统。

HDFS采用master/slave架构。一个HDFS集群是由一个Namenode和一定数目的Datanodes组成。Namenode是一个中心服务器,负责管理文件系统的名字空间(namespace)以及客户端对文件的访问。集群中的Datanode一般是一个节点一个,负责管理它所在节点上的存储。HDFS暴露了文件系统的名字空间,用户能够以文件的形式在上面存储数据。从内部看,一个文件其实被分成一个或多个数据块,这些块存储在一组Datanode上。Namenode执行文件系统的名字空间操作,比如打开、关闭、重命名文件或目录。它也负责确定数据块到具体Datanode节点的映射。Datanode负责处理文件系统客户端的读写请求。在Namenode的统一调度下进行数据块的创建、删除和复制。

在这里插入图片描述
其架构详细概述如下:

  1. NameNode(nn):
    NameNode是HDFS的主节点,负责管理整个文件系统的命名空间和数据块的元数据信息。它维护文件系统的目录结构、文件的安全权限信息和数据块的位置信息等。NameNode还处理客户端的文件系统操作请求,如文件的读写和块的创建、复制和删除等。

  2. DataNode(dn):
    DataNode是HDFS的工作节点,负责实际存储文件数据和执行文件系统操作的任务。每个DataNode负责管理一定数量的数据块,并定期向NameNode报告数据块的存储信息。DataNode还处理来自客户端和其他DataNode的读取和写入请求,以及数据块的复制和恢复等。

  3. 存储指定副本:
    HDFS中的文件被分成一系列的数据块,这些数据块会被复制到不同的Datanode上。根据副本配置参数,每个数据块在HDFS中会有多个副本,这样可以提高数据的可靠性和容错性。HDFS会尽量将这些副本存储在不同的机架、节点和硬盘上,以防止硬件故障或网络故障导致的数据丢失。

  4. 客户端(Client):
    客户端是使用HDFS的应用程序。它们通过与Namenode和Datanode进行通信来读取和写入文件。客户端向Namenode请求文件的元数据信息,根据元数据信息确定所需数据块的位置,并从Datanode获取数据。客户端还负责处理文件系统的操作,如创建、删除、重命名和移动文件等。


Yarn架构设计

YARN(Yet Another Resource Negotiator)的基本思想是将资源管理和作业调度/监视的功能拆分为单独的守护进程。这个想法是有一个全局的ResourceManager (RM)和每个应用的ApplicationMaster (AM)。应用程序可以是单个作业,也可以是作业DAG。它的架构设计如下:

在这里插入图片描述

  1. ResourceManager(资源管理器):
    ResourceManager是YARN集群的主节点,负责整个集群的资源管理和任务调度。它接收来自客户端、应用程序和NodeManager的资源请求,分配和调度集群中的资源。ResourceManager还负责监控集群的健康状态,处理故障和任务的重新分配,以确保高可用性和稳定性。

  2. NodeManager(节点管理器):
    NodeManager是YARN集群中每个节点上的组件,负责管理和监控该节点上的计算资源。NodeManager通过向ResourceManager注册自己的资源和容器信息,将自身纳入到集群的资源管理中。它负责启动和监控容器,接收来自ResourceManager的资源分配指令,并向ResourceManager报告计算资源的使用情况。

  3. ApplicationMaster(应用程序管理器):
    每个在YARN上运行的应用程序都会有一个ApplicationMaster。ApplicationMaster负责协调和管理应用程序的资源需求,与ResourceManager通信并向其申请资源。它还监控应用程序的运行状态和容器的健康度,并处理容器的启动、停止和失败等情况。ApplicationMaster执行应用程序的逻辑,将整个应用程序划分为一系列的任务,并与NodeManager通信来启动和管理任务的执行。

  4. Container(容器):
    在YARN中,任务被封装到一个个容器中。容器是对计算资源的抽象,它由ResourceManager分配给ApplicationMaster,并由ApplicationMaster分配给具体的任务执行。每个容器拥有自己的计算和存储资源,并在NodeManager上创建和运行任务相关的进程。容器提供了高度的隔离性和资源限制,确保应用程序之间不会相互干扰。


ResourceManager有两个主要组件:Scheduler和ApplicationsManager。

Scheduler负责将资源分配给各种正在运行的应用程序,这些应用程序受到熟悉的容量、队列等约束。Scheduler是纯粹的Scheduler,因为它不监视或跟踪应用程序的状态。此外,它不能保证重新启动由于应用程序故障或硬件故障而失败的任务。调度程序根据应用程序的资源需求执行调度功能;它是基于资源容器的抽象概念来实现的,资源容器包含了诸如内存、cpu、磁盘、网络等元素。

ApplicationsManager 负责接受作业提交、协商第一个容器来执行应用程序特定的 ApplicationMaster 并提供在失败时重新启动 ApplicationMaster 容器的服务。每个应用程序的 ApplicationMaster 负责与 Scheduler 协商适当的资源容器,跟踪其状态并监控进度。


MapReduce架构设计

MapReduce是一种分布式计算编程模型,用于处理大规模数据集。它的架构设计包括以下几个组件:

  1. JobTracker(作业调度器):
    JobTracker是MapReduce作业的主节点,负责整个作业的调度和执行。它接收来自客户端的作业请求,将作业划分为多个任务,并分配给各个TaskTracker进行执行。JobTracker还负责监控任务的进度和状态,处理任务的失败和重新分配,以确保作业的顺利运行。

  2. TaskTracker(任务执行器):
    TaskTracker是在每个集群节点上运行的组件,负责执行作业中的任务。它接收来自JobTracker的任务分配指令,并在该节点上启动和管理任务的执行。TaskTracker将任务划分为Map任务和Reduce任务,并负责处理任务的输入输出数据,以及任务的进度和状态更新。

  3. MapTask(映射任务):
    MapTask是MapReduce作业的计算阶段。每个MapTask从输入数据中抽取一部分数据,经过映射函数的处理后生成键值对(key-value pair)。MapTask独立进行执行,处理输入数据的分片,将处理后的中间结果写入本地磁盘。

  4. ReduceTask(归约任务):
    ReduceTask是MapReduce作业的归约阶段。每个ReduceTask接收来自Mapper的输出结果,并按照键进行归约操作,将具有相同键的数据进行合并和计算生成最终结果。ReduceTask也独立执行,将归约后的结果写入最终输出文件。

  5. 分布式文件系统:
    MapReduce框架通常与分布式文件系统(如HDFS)结合使用,用于存储输入数据和输出结果。分布式文件系统提供了高可靠性和容错性,并支持数据的高并发访问。

通过这种架构设计,MapReduce就可以实现任务的分布式执行和并行计算,并能够高效处理大规模数据集。
Map阶段将计算任务分布到不同的节点上进行并行处理,Reduce阶段将中间结果进行合并和计算生成最终结果。这种框架设计适用于各种数据处理场景,如数据排序、数据过滤、数据聚合等。同时,MapReduce框架也提供了一些其他功能,如容错性、动态负载均衡和数据本地化等,以提高作业的执行效率和数据处理速度。


总结

Hadoop的三大核心组件HDFS、MapReduce和YARN共同构成了一个完整的分布式计算框架。HDFS提供了高可靠性的分布式文件存储,MapReduce实现了高效的并行计算,而YARN则管理着集群的资源和任务。通过这三个组件的配合,Hadoop能够处理大规模数据集的存储、计算和调度,为大数据处理提供了强大的支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1473174.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL数据库进阶第五篇(锁)

文章目录 一、锁的概述二、全局锁三、表级锁四、元数据锁(meta data lock, MDL)五、意向锁六、行级锁七、行锁(Record Lock)八、间隙锁(Gap Lock)九、临键锁(Next-Key Lock)十、锁总…

python(ch1)

四个软件简介 1. IDLE IDLE 是 Python 官方 IDLE 开发环境,一个功能简单的文本编辑器,带有语法高亮、自动补全和缩进功能。它适合初学者学习 Python 的基本语法和概念。 2. PyCharm PyCharm 是 JetBrains 开发的一款功能强大的 Python IDE&#xff0…

ChatGPT带火的HBM是什么?

“ChatGPT是人工智能领域的iPhone时刻,也是计算领域有史以来最伟大的技术之一。” 英伟达创始人兼CEO黄仁勋此前这样盛赞ChatGPT。 ChatGPT突然爆火,对大算力芯片提出了更高更多的要求。近日,据韩国经济日报报道,受惠于ChatGPT&am…

naive-ui-admin BasicTable 列表操作栏显示图标icon

效果图 在使用BasicTable的页面添加引用,这里随便弄了个icon import { GameController } from "vicons/ionicons5" 自定义列 const actionColumn reactive({width: 180,title: "操作",key: "action",fixed: "right",ren…

python爬虫实战:获取电子邮件和联系人信息

引言 在数字时代,电子邮件和联系人信息成为了许多企业和个人重要的资源,在本文中,我们将探讨如何使用Python爬虫从网页中提取电子邮件和联系人信息,并附上示例代码。 目录 引言 二、准备工作 你可以使用以下命令来安装这些库&a…

【笔记】深度学习入门:基于Python的理论与实现(二)

神经网络的学习(神经网络的学习阶段,不是我们学习神经网络) 从数据中学习 训练数据和测试数据 机器学习中,一般将数据分为训练数据和测试数据两部分来进行学习和 实验等。首先,使用训练数据进行学习,寻找最…

SQL进阶(三):Join 小技巧:提升数据的处理速度

复杂数据结构处理:Join 小技巧:提升数据的处理速度 本文是在原本sql闯关的基础上总结得来,加入了自己的理解以及疑问解答(by GPT4) 原活动链接 用到的数据:链接 提取码:l03e 目录 1. 课前小问…

C++笔记之执行一个可执行文件时指定动态库所存放的文件夹lib的路径

C++笔记之执行一个可执行文件时指定动态库所存放的文件夹lib的路径 参考博文: 1.C++笔记之执行一个可执行文件时指定动态库所存放的文件夹lib的路径 2.Linux笔记之LD_LIBRARY_PATH详解 3.qt-C++笔记之使用QProcess去执行一个可执行文件时指定动态库所存放的文件夹lib的路径 c…

React PureComponent 和 React.memo()区别

1 注意 ● PureComponent和memo仅作为性能优化的方式存在 ● 不要依赖它来阻止渲染,会产生BUG ● PureComponnet 和memo 都是通过对 props 值的浅比较来决定该组件是否需要更新的。 2 PureComponent 和React.memo() 区别 PureComponent 和React.memo()都是React优化…

Sora专辑|AI界一夜变天

没有丝毫预热和剧透,Open AI深夜直接丢下核弹炸了街,从业者深感要变天。 2月16日凌晨,Open AI发布了首个“文生视频”模型Sora。官方介绍,Sora能根据文字指令创造出包含丰富细节的逼真场景、角色,且能用多角度镜头,生成一镜到底的60秒长视频。 目前官网上已经更新了48个…

python Matplotlib Tkinter-->导出pdf报表

环境 python:python-3.12.0-amd64 包: matplotlib 3.8.2 reportlab 4.0.9 import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk import tkinter as tk import tkinter.messagebox as messagebox impor…

【java-集合框架】ArrayList类

📢java基础语法,集合框架是什么?顺序表的底层模拟实现都是看本篇前的基础必会内容,本篇不再赘述,详情见评论区文章。 📢编程环境:idea 【java-集合框架】ArrayList类 1. 先回忆一下java代码中常…

Facebook Messenger链接分享:如何创建链接并设置自动化内容

Facebook Messenger链接是指基于Facebook用户名创建的会话链接,用户可以在其Facebook页面的设置部分复制此链接进行分享。然后将该链接直接粘贴到独立站、电子邮件、名片或社交媒体中,让目标受众可以一键进入对话。为了满足某些商家的需求,Fa…

Qt QWidget 简约美观的加载动画 第五季 - 小方块风格

给大家分享两个小方块风格的加载动画 &#x1f60a; 第五季来啦 &#x1f60a; 效果如下: 一个三个文件,可以直接编译运行 //main.cpp #include "LoadingAnimWidget.h" #include <QApplication> #include <QGridLayout> int main(int argc, char *arg…

时间序列分析实战(四):Holt-Winters建模及预测

&#x1f349;CSDN小墨&晓末:https://blog.csdn.net/jd1813346972 个人介绍: 研一&#xff5c;统计学&#xff5c;干货分享          擅长Python、Matlab、R等主流编程软件          累计十余项国家级比赛奖项&#xff0c;参与研究经费10w、40w级横向 文…

C++ //练习 9.24 编写程序,分别使用at、下标运算符、front和begin提取一个vector中的第一个元素。在一个空vector上测是你的程序。

C Primer&#xff08;第5版&#xff09; 练习 9.24 练习 9.24 编写程序&#xff0c;分别使用at、下标运算符、front和begin提取一个vector中的第一个元素。在一个空vector上测是你的程序。 环境&#xff1a;Linux Ubuntu&#xff08;云服务器&#xff09; 工具&#xff1a;v…

详解POCV/SOCV的时序报告

​POCV/SOCV的时序报告中有如下变量&#xff1a; Mean: 高斯分布中的μ值&#xff08;平均值&#xff09; Sensit: sensitivity&#xff0c;也就是1个Sigma的值&#xff1b; Corner: Sigma边界的最差值 cell的delay Delay mean N * Delay sigma; cell 的Transition Sl…

UE5 C++ Widget练习 Button 和 ProgressBar创建血条

一. 1.C创建一个继承Widget类的子类&#xff0c; 命名为MyUserWidget 2.加上Button 和 UserWidget的头文件 #include "CoreMinimal.h" #include "Components/Button.h" #include "Blueprint/UserWidget.h" #include "MyUserWidget.genera…

OpenCV 16 - Qt使用opencv视觉库

1 下载好opencv视觉库 不知道怎么下载和编译opencv视觉库的可以直接使用这个 : opencvcv_3.4.2_qt 2 解压opencv包 3 打开opencv的安装目录 4.打开x86/bin 复制里面所有的dll文件&#xff0c;黏贴到C/windows/syswow64里面 5 新建Qt项目 6 修改pro文件:添加对应的头文件和库文件…

【HMAC-SHA1算法以及工作原理】

曾梦想执剑走天涯&#xff0c;我是程序猿【AK】 目录 简述概要知识图谱总结 简述概要 连接HMAC-SHA1工作原理以及工具代码 知识图谱 HMAC&#xff08;Hash-based Message Authentication Code&#xff0c;基于散列的消息认证码&#xff09;是一种结合了密钥和消息的认证方法…