【深度学习笔记】 3_13 丢弃法

news2025/5/12 6:13:47

注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图

3.13 丢弃法

除了前一节介绍的权重衰减以外,深度学习模型常常使用丢弃法(dropout)[1] 来应对过拟合问题。丢弃法有一些不同的变体。本节中提到的丢弃法特指倒置丢弃法(inverted dropout)。

3.13.1 方法

回忆一下,3.8节(多层感知机)的图3.3描述了一个单隐藏层的多层感知机。其中输入个数为4,隐藏单元个数为5,且隐藏单元 h i h_i hi i = 1 , … , 5 i=1, \ldots, 5 i=1,,5)的计算表达式为

h i = ϕ ( x 1 w 1 i + x 2 w 2 i + x 3 w 3 i + x 4 w 4 i + b i ) h_i = \phi\left(x_1 w_{1i} + x_2 w_{2i} + x_3 w_{3i} + x_4 w_{4i} + b_i\right) hi=ϕ(x1w1i+x2w2i+x3w3i+x4w4i+bi)

这里 ϕ \phi ϕ是激活函数, x 1 , … , x 4 x_1, \ldots, x_4 x1,,x4是输入,隐藏单元 i i i的权重参数为 w 1 i , … , w 4 i w_{1i}, \ldots, w_{4i} w1i,,w4i,偏差参数为 b i b_i bi。当对该隐藏层使用丢弃法时,该层的隐藏单元将有一定概率被丢弃掉。设丢弃概率为 p p p,那么有 p p p的概率 h i h_i hi会被清零,有 1 − p 1-p 1p的概率 h i h_i hi会除以 1 − p 1-p 1p做拉伸。丢弃概率是丢弃法的超参数。具体来说,设随机变量 ξ i \xi_i ξi为0和1的概率分别为 p p p 1 − p 1-p 1p。使用丢弃法时我们计算新的隐藏单元 h i ′ h_i' hi

h i ′ = ξ i 1 − p h i h_i' = \frac{\xi_i}{1-p} h_i hi=1pξihi

由于 E ( ξ i ) = 1 − p E(\xi_i) = 1-p E(ξi)=1p,因此

E ( h i ′ ) = E ( ξ i ) 1 − p h i = h i E(h_i') = \frac{E(\xi_i)}{1-p}h_i = h_i E(hi)=1pE(ξi)hi=hi

丢弃法不改变其输入的期望值。让我们对图3.3中的隐藏层使用丢弃法,一种可能的结果如图3.5所示,其中 h 2 h_2 h2 h 5 h_5 h5被清零。这时输出值的计算不再依赖 h 2 h_2 h2 h 5 h_5 h5,在反向传播时,与这两个隐藏单元相关的权重的梯度均为0。由于在训练中隐藏层神经元的丢弃是随机的,即 h 1 , … , h 5 h_1, \ldots, h_5 h1,,h5都有可能被清零,输出层的计算无法过度依赖 h 1 , … , h 5 h_1, \ldots, h_5 h1,,h5中的任一个,从而在训练模型时起到正则化的作用,并可以用来应对过拟合。在测试模型时,我们为了拿到更加确定性的结果,一般不使用丢弃法。

在这里插入图片描述

图3.5 隐藏层使用了丢弃法的多层感知机

3.13.2 从零开始实现

根据丢弃法的定义,我们可以很容易地实现它。下面的dropout函数将以drop_prob的概率丢弃X中的元素。

%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l

def dropout(X, drop_prob):
    X = X.float()
    assert 0 <= drop_prob <= 1  #如果 drop_prob 小于0或大于1,这个断言将失败,程序将停止执行并显示一个错误信息。
    keep_prob = 1 - drop_prob
    # 这种情况下把全部元素都丢弃
    if keep_prob == 0:
        return torch.zeros_like(X)
    mask = (torch.rand(X.shape) < keep_prob).float()
    
    return mask * X / keep_prob

我们运行几个例子来测试一下dropout函数。其中丢弃概率分别为0、0.5和1。

X = torch.arange(16).view(2, 8)
dropout(X, 0)

在这里插入图片描述

dropout(X, 0.5)

在这里插入图片描述

dropout(X, 1.0)

在这里插入图片描述

3.13.2.1 定义模型参数

实验中,我们依然使用3.6节(softmax回归的从零开始实现)中介绍的Fashion-MNIST数据集。我们将定义一个包含两个隐藏层的多层感知机,其中两个隐藏层的输出个数都是256。

num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256

W1 = torch.tensor(np.random.normal(0, 0.01, size=(num_inputs, num_hiddens1)), dtype=torch.float, requires_grad=True)
b1 = torch.zeros(num_hiddens1, requires_grad=True)
W2 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens1, num_hiddens2)), dtype=torch.float, requires_grad=True)
b2 = torch.zeros(num_hiddens2, requires_grad=True)
W3 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens2, num_outputs)), dtype=torch.float, requires_grad=True)
b3 = torch.zeros(num_outputs, requires_grad=True)

params = [W1, b1, W2, b2, W3, b3]

3.13.2.2 定义模型

下面定义的模型将全连接层和激活函数ReLU串起来,并对每个激活函数的输出使用丢弃法。我们可以分别设置各个层的丢弃概率。通常的建议是把靠近输入层的丢弃概率设得小一点。在这个实验中,我们把第一个隐藏层的丢弃概率设为0.2,把第二个隐藏层的丢弃概率设为0.5。我们可以通过参数is_training来判断运行模式为训练还是测试,并只需在训练模式下使用丢弃法。

drop_prob1, drop_prob2 = 0.2, 0.5

def net(X, is_training=True):
    X = X.view(-1, num_inputs)
    H1 = (torch.matmul(X, W1) + b1).relu()
    if is_training:  # 只在训练模型时使用丢弃法
        H1 = dropout(H1, drop_prob1)  # 在第一层全连接后添加丢弃层
    H2 = (torch.matmul(H1, W2) + b2).relu()
    if is_training:
        H2 = dropout(H2, drop_prob2)  # 在第二层全连接后添加丢弃层
    return torch.matmul(H2, W3) + b3

我们在对模型评估的时候不应该进行丢弃,所以我们修改一下d2lzh_pytorch中的evaluate_accuracy函数:

# 本函数已保存在d2lzh_pytorch
def evaluate_accuracy(data_iter, net):
    acc_sum, n = 0.0, 0
    for X, y in data_iter:
        if isinstance(net, torch.nn.Module):
            net.eval() # 评估模式, 这会关闭dropout
            acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
            net.train() # 改回训练模式
        else: # 自定义的模型
            if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
                # 将is_training设置成False
                acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() 
            else:
                acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() 
        n += y.shape[0]
    return acc_sum / n

注:将上诉evaluate_accuracy写回d2lzh_pytorch后要重启一下jupyter kernel才会生效。

3.13.2.3 训练和测试模型

这部分与之前多层感知机的训练和测试类似。

num_epochs, lr, batch_size = 5, 100.0, 256
loss = torch.nn.CrossEntropyLoss()
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params, lr)

输出:

epoch 1, loss 0.0044, train acc 0.574, test acc 0.648
epoch 2, loss 0.0023, train acc 0.786, test acc 0.786
epoch 3, loss 0.0019, train acc 0.826, test acc 0.825
epoch 4, loss 0.0017, train acc 0.839, test acc 0.831
epoch 5, loss 0.0016, train acc 0.849, test acc 0.850

注:这里的学习率设置的很大,原因同3.9.6节。

3.13.3 简洁实现

在PyTorch中,我们只需要在全连接层后添加Dropout层并指定丢弃概率。在训练模型时,Dropout层将以指定的丢弃概率随机丢弃上一层的输出元素;在测试模型时(即model.eval()后),Dropout层并不发挥作用。

net = nn.Sequential(
        d2l.FlattenLayer(),
        nn.Linear(num_inputs, num_hiddens1),
        nn.ReLU(),
        nn.Dropout(drop_prob1),
        nn.Linear(num_hiddens1, num_hiddens2), 
        nn.ReLU(),
        nn.Dropout(drop_prob2),
        nn.Linear(num_hiddens2, 10)
        )

for param in net.parameters():
    nn.init.normal_(param, mean=0, std=0.01)

下面训练并测试模型。

optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)

输出:

epoch 1, loss 0.0045, train acc 0.553, test acc 0.715
epoch 2, loss 0.0023, train acc 0.784, test acc 0.793
epoch 3, loss 0.0019, train acc 0.822, test acc 0.817
epoch 4, loss 0.0018, train acc 0.837, test acc 0.830
epoch 5, loss 0.0016, train acc 0.848, test acc 0.839

注:由于这里使用的是PyTorch的SGD而不是d2lzh_pytorch里面的sgd,所以就不存在3.9.6节那样学习率看起来很大的问题了。

小结

  • 我们可以通过使用丢弃法应对过拟合。
  • 丢弃法只在训练模型时使用。

参考文献

[1] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. JMLR


注:本节除了代码之外与原书基本相同,原书传送门

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1470522.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HDL FPGA 学习 - Quartus II 工程搭建,ModelSim 仿真,时序分析,IP 核使用,Nios II 软核使用,更多技巧和规范总结

目录 工程搭建、仿真与时钟约束 一点技巧 ModelSim 仿真 Timing Analyzer 时钟信号约束 SignalTap II 使用 In-System Memory Content Editor 使用 记录 QII 的 IP 核使用 记录 Qsys/Nios II 相关 记录 Qsys 的 IP 核使用 封装 Avalon IP 更多小技巧教程文章 更多好…

【C语言】linux内核ipoib模块 - ipoib_tx_poll

一、中文注释 这段代码是 Linux 内核网络栈中与 InfiniBand 协议相关的一个部分&#xff0c;特别是与 IP over InfiniBand (IPoIB)相关。该函数负责去处理IPoIB的发送完成队列&#xff08;发送CQ&#xff09;上的工作请求&#xff08;work completions&#xff09;。以下是对这…

前后端分离Vue+ElementUI+nodejs蛋糕甜品商城购物网站95m4l

本文主要介绍了一种基于windows平台实现的蛋糕购物商城网站。该系统为用户找到蛋糕购物商城网站提供了更安全、更高效、更便捷的途径。本系统有二个角色&#xff1a;管理员和用户&#xff0c;要求具备以下功能&#xff1a; &#xff08;1&#xff09;用户可以修改个人信息&…

YOLO系列论文阅读(v1--v3)

搞目标检测&#xff0c;绕不开的一个框架就是yolo&#xff0c;而且更糟糕的是&#xff0c;随着yolo的发展迭代&#xff0c;yolo网络可以做的事越来越多&#xff0c;语义分割&#xff0c;关键点检测&#xff0c;3D目标检测。。。这几天决定把YOLO系列彻底梳理一下&#xff0c;在…

奇异递归模板模式应用6-类模板enable_shared_from_this

异步编程中存在一种场景&#xff0c;需要在类中将该类的对象注册到某个回调类或函数中&#xff0c;不能简单地将this传递给回调类中&#xff0c;很可能因为回调时该对象不存在而导致野指针访问&#xff08;也有可能在析构函数解注册时被回调&#xff0c;造成对象不完整&#xf…

【变压器故障诊断分类及预测】基于GRNN神经网络

课题名称&#xff1a;基于GRNN神经网络的变压器故障诊断分类及预测 版本日期&#xff1a;2024-02-10 运行方式&#xff1a;直接运行GRNN0507.m文件 代码获取方式&#xff1a;私信博主或QQ&#xff1a;491052175 模型描述&#xff1a; 对变压器油中溶解气体进行分析是变压器…

基于springboot+vue的精准扶贫管理系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

前端工程化面试题 | 15.精选前端工程化高频面试题

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

Linux系统前后端分离项目

目录 一.jdk安装 二.tomcat安装 三.MySQL安装 四.nginx安装 五.Nginx负载均衡tomcat 六.前端部署 一.jdk安装 1. 上传jdk安装包 jdk-8u151-linux-x64.tar.gz 进入opt目录&#xff0c;将安装包拖进去 2. 解压安装包 这里需要解压到usr/local目录下&#xff0c;在这里新建一个…

基于yolov5的电瓶车和自行车检测系统,可进行图像目标检测,也可进行视屏和摄像检测(pytorch框架)【python源码+UI界面+功能源码详解】

功能演示&#xff1a; 基于yolov5的电瓶车和自行车检测系统_哔哩哔哩_bilibili &#xff08;一&#xff09;简介 基于yolov5的电瓶车和自行车检测系统是在pytorch框架下实现的&#xff0c;这是一个完整的项目&#xff0c;包括代码&#xff0c;数据集&#xff0c;训练好的模型…

低于API等级30的应用将无法在上述应用商店

minSdkVersion minSdkVersion用于指定应用兼容的最低Android版本&#xff08;API等级&#xff09;。 如果APP某些功能无法支持低版本Android系统的设备&#xff0c;可以配置minSdkVersion确保APP只能安装到指定Android版本以上的设备。HBuilder|HBuilderX中可在manifest.json中…

单词倒排——c语言解法

以下是题目&#xff1a; 这个题中有三个点&#xff0c; 一个是将非字母的字符转换为空格&#xff0c; 第二是如果有两个连续的空格&#xff0c; 那么就可以将这两个连续的空格变成一个空格。 第三个点就是让单词倒排。 那么我们就可以将这三个点分别封装成三个函数。 还有就是…

Spring Security源码学习

Spring Security本质是一个过滤器链 过滤器链本质是责任链设计模型 1. HttpSecurity 【第五篇】深入理解HttpSecurity的设计-腾讯云开发者社区-腾讯云 在以前spring security也是采用xml配置的方式&#xff0c;在<http>标签中配置http请求相关的配置&#xff0c;如用户…

Linux下的版本控制系统——Git:初学者指南

引言 在软件开发的世界中&#xff0c;版本控制是一项至关重要的技术。它允许开发者追踪和管理代码的变更历史&#xff0c;协同工作&#xff0c;并在必要时恢复到之前的版本。而在Linux系统下&#xff0c;Git已经成为事实上的版本控制标准。本文将带领大家走进Git的世界&#x…

【人脸朝向识别与分类预测】基于PNN神经网络

课题名称&#xff1a;基于PNN神经网络的人脸朝向识别分类 版本日期&#xff1a;2024-02-20 运行方式&#xff1a;直接运行PNN0503.m文件 代码获取方式&#xff1a;私信博主或 QQ:491052175 模型描述&#xff1a; 采集到一组人脸朝向不同角度时的图像&#xff0c;图像来自不…

React组件详解

React组件分为两大类 1.函数组件 2.类组件&#xff08;最常用&#xff09; 组件化 import ReactDom from "react-dom";// // 1.通过函数创建一个组件 // 2.函数名字必须大写开头 // 3.函数必须有返回值 function Func1() {return <h2>这是一个基础组件</h…

[设计模式Java实现附plantuml源码~行为型]对象间的联动~观察者模式

前言&#xff1a; 为什么之前写过Golang 版的设计模式&#xff0c;还在重新写Java 版&#xff1f; 答&#xff1a;因为对于我而言&#xff0c;当然也希望对正在学习的大伙有帮助。Java作为一门纯面向对象的语言&#xff0c;更适合用于学习设计模式。 为什么类图要附上uml 因为很…

数字化转型导师鹏:政府数字化转型政务服务类案例研究

政府数字化转型政务服务类案例研究 课程背景&#xff1a; 很多地方政府存在以下问题&#xff1a; 不清楚标杆省政府数字化转型的政务服务类成功案例 不清楚地级市政府数字化转型的政务服务类成功案例 不清楚县区级政府数字化转型的政务服务类成功案例 课程特色&#x…

PX4FMU和PX4IO最底层启动过程分析(下)

PX4FMU和PX4IO最底层启动过程分析&#xff08;下&#xff09; PX4FMU的系统启动函数为nash_main(int argc,char *argv[]) PX4IO的系统启动函数为nash_start(int argc,char *argv[]) PX4FMU启动函数nash_main(int argc,char *argv[]) 首先分析一下nash_main(int argc,char *a…

2023最新盲盒交友脱单系统源码

源码获取方式 搜一搜&#xff1a;万能工具箱合集 点击资源库直接进去获取源码即可 如果没看到就是待更新&#xff0c;会陆续更新上 或 源码软件库 最新盲盒交友脱单系统源码&#xff0c;纸条广场&#xff0c;单独抽取/连抽/同城抽取/高质量盒子 新增功能包括心动推荐&#xff…