目录
介绍
模型
项目
效果
代码
下载
C# OpenCvSharp DNN Image Retouching
介绍
github地址:https://github.com/hejingwenhejingwen/CSRNet
(ECCV 2020) Conditional Sequential Modulation for Efficient Global Image Retouching

模型
Model Properties
 -------------------------
 ---------------------------------------------------------------
Inputs
 -------------------------
 name:input
 tensor:Float[1, 3, 360, 640]
 ---------------------------------------------------------------
Outputs
 -------------------------
 name:output
 tensor:Float[1, 3, 360, 640]
 ---------------------------------------------------------------
项目

效果


代码
using OpenCvSharp;
 using OpenCvSharp.Dnn;
 using System;
 using System.Collections.Generic;
 using System.Drawing;
 using System.IO;
 using System.Linq;
 using System.Linq.Expressions;
 using System.Numerics;
 using System.Reflection;
 using System.Windows.Forms;
namespace OpenCvSharp_DNN_Demo
 {
     public partial class frmMain : Form
     {
         public frmMain()
         {
             InitializeComponent();
         }
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
         string image_path = "";
        DateTime dt1 = DateTime.Now;
         DateTime dt2 = DateTime.Now;
string modelpath;
        int inpHeight;
         int inpWidth;
        Net opencv_net;
         Mat BN_image;
        Mat image;
         Mat result_image;
        private void button1_Click(object sender, EventArgs e)
         {
             OpenFileDialog ofd = new OpenFileDialog();
             ofd.Filter = fileFilter;
             if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
             pictureBox2.Image = null;
             textBox1.Text = "";
            image_path = ofd.FileName;
             pictureBox1.Image = new Bitmap(image_path);
             image = new Mat(image_path);
         }
        private void Form1_Load(object sender, EventArgs e)
         {
             modelpath = "model/csrnet_360x640.onnx";
            inpHeight = 360;
             inpWidth = 640;
opencv_net = CvDnn.ReadNetFromOnnx(modelpath);
            image_path = "test_img/0014.jpg";
             pictureBox1.Image = new Bitmap(image_path);
}
        private unsafe void button2_Click(object sender, EventArgs e)
         {
             if (image_path == "")
             {
                 return;
             }
             textBox1.Text = "检测中,请稍等……";
             pictureBox2.Image = null;
             Application.DoEvents();
image = new Mat(image_path);
            int srch = image.Rows;
             int srcw = image.Cols;
             BN_image = CvDnn.BlobFromImage(image, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), true, false);
            //配置图片输入数据
             opencv_net.SetInput(BN_image);
            //模型推理,读取推理结果
             Mat[] outs = new Mat[1] { new Mat() };
             string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();
dt1 = DateTime.Now;
opencv_net.Forward(outs, outBlobNames);
dt2 = DateTime.Now;
            float* pdata = (float*)outs[0].Data;
             int out_h = outs[0].Size(2);
             int out_w = outs[0].Size(3);
             int channel_step = out_h * out_w;
             float[] data = new float[channel_step * 3];
             for (int i = 0; i < data.Length; i++)
             {
                 data[i] = pdata[i] * 255;
                if (data[i] < 0)
                 {
                     data[i] = 0;
                 }
                 else if (data[i] > 255)
                 {
                     data[i] = 255;
                 }
             }
            float[] temp_r = new float[out_h * out_w];
             float[] temp_g = new float[out_h * out_w];
             float[] temp_b = new float[out_h * out_w];
            Array.Copy(data, temp_r, out_h * out_w);
             Array.Copy(data, out_h * out_w, temp_g, 0, out_h * out_w);
             Array.Copy(data, out_h * out_w * 2, temp_b, 0, out_h * out_w);
            Mat rmat = new Mat(out_h, out_w, MatType.CV_32F, temp_r);
             Mat gmat = new Mat(out_h, out_w, MatType.CV_32F, temp_g);
             Mat bmat = new Mat(out_h, out_w, MatType.CV_32F, temp_b);
            result_image = new Mat();
             Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image);
Cv2.Resize(result_image, result_image, new OpenCvSharp.Size(srcw, srch));
            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
             textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
         }
        private void pictureBox2_DoubleClick(object sender, EventArgs e)
         {
             Common.ShowNormalImg(pictureBox2.Image);
         }
        private void pictureBox1_DoubleClick(object sender, EventArgs e)
         {
             Common.ShowNormalImg(pictureBox1.Image);
         }
     }
 }
  
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Linq.Expressions;
using System.Numerics;
using System.Reflection;
using System.Windows.Forms;
namespace OpenCvSharp_DNN_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string modelpath;
        int inpHeight;
        int inpWidth;
        Net opencv_net;
        Mat BN_image;
        Mat image;
        Mat result_image;
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }
        private void Form1_Load(object sender, EventArgs e)
        {
            modelpath = "model/csrnet_360x640.onnx";
            inpHeight = 360;
            inpWidth = 640;
            opencv_net = CvDnn.ReadNetFromOnnx(modelpath);
            image_path = "test_img/0014.jpg";
            pictureBox1.Image = new Bitmap(image_path);
        }
        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            Application.DoEvents();
            image = new Mat(image_path);
            int srch = image.Rows;
            int srcw = image.Cols;
            BN_image = CvDnn.BlobFromImage(image, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), true, false);
            //配置图片输入数据
            opencv_net.SetInput(BN_image);
            //模型推理,读取推理结果
            Mat[] outs = new Mat[1] { new Mat() };
            string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();
            dt1 = DateTime.Now;
            opencv_net.Forward(outs, outBlobNames);
            dt2 = DateTime.Now;
            float* pdata = (float*)outs[0].Data;
            int out_h = outs[0].Size(2);
            int out_w = outs[0].Size(3);
            int channel_step = out_h * out_w;
            float[] data = new float[channel_step * 3];
            for (int i = 0; i < data.Length; i++)
            {
                data[i] = pdata[i] * 255;
                if (data[i] < 0)
                {
                    data[i] = 0;
                }
                else if (data[i] > 255)
                {
                    data[i] = 255;
                }
            }
            float[] temp_r = new float[out_h * out_w];
            float[] temp_g = new float[out_h * out_w];
            float[] temp_b = new float[out_h * out_w];
            Array.Copy(data, temp_r, out_h * out_w);
            Array.Copy(data, out_h * out_w, temp_g, 0, out_h * out_w);
            Array.Copy(data, out_h * out_w * 2, temp_b, 0, out_h * out_w);
            Mat rmat = new Mat(out_h, out_w, MatType.CV_32F, temp_r);
            Mat gmat = new Mat(out_h, out_w, MatType.CV_32F, temp_g);
            Mat bmat = new Mat(out_h, out_w, MatType.CV_32F, temp_b);
            result_image = new Mat();
            Cv2.Merge(new Mat[] { bmat, gmat, rmat }, result_image);
            Cv2.Resize(result_image, result_image, new OpenCvSharp.Size(srcw, srch));
            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
        }
        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }
        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}
下载
源码下载



















