【AIGC】大语言模型

news2025/6/28 2:30:02

在这里插入图片描述
大型语言模型,也叫大语言模型、大模型(Large Language Model,LLM;Large Language Models,LLMs)

什么是大型语言模型
大型语言模型(LLM)是指具有数千亿(甚至更多)参数的语言模型,它们是通过在大规模文本数据上进行训练而得到的。这些模型基于Transformer架构,其中包含多头注意力层,堆叠在一个非常深的神经网络中。常见的LLM包括GPT-3、PaLM、Galactica和LLaMA等。

与小型语言模型相比,LLM在模型规模、预训练数据量和总体计算量上都有大幅度的增加。这使得它们能够更好地理解自然语言,并能根据给定的上下文生成高质量的文本。

LLM的这种容量提升可以部分地用标度律进行描述,其中模型性能的增长大致与模型大小的增加成正比。随着LLM的不断发展,它们已经成为了自然语言处理和人工智能领域的重要组成部分,被广泛应用于文本生成、翻译、问答等任务中

NLP到大型语言模型的进阶历程
关于LLM的发展历程,我们可以简单分为五个阶段:

规则阶段(1956年-1992年):基于规则的机器翻译系统使用内部模块串联功能,人工从数据中获取知识并归纳规则,然后将这些规则教给机器执行特定任务。

统计机器学习阶段(1993年-2012年):机器翻译系统被分解为语言模型和翻译模型,机器开始自动从数据中学习知识。主流技术包括SVM、HMM、MaxEnt、CRF、LM等,数据量约为百万级。

深度学习阶段(2013年-2018年):技术从离散匹配发展到embedding连续匹配,模型规模增大。典型技术栈包括Encoder-Decoder、LSTM、Attention、Embedding等,标注数据量提升到千万级。

预训练阶段(2018年-2022年):引入自监督学习,将可利用数据从标注数据拓展到非标注数据。系统分为预训练和微调两个阶段,预训练数据量扩大3到5倍,典型技术栈包括Encoder-Decoder、Transformer、Attention等。

大型语言模型阶段(2023年至今):目标是使机器能够理解人类的命令并遵循人类的价值观。该阶段将过去的两个阶段合并为一个预训练阶段,转向与人类价值观的对齐,而不是领域迁移。此阶段的突变性很高,已经从专用任务转向通用任务,或以自然语言人机接口的方式呈现。

NLP的发展趋势

数据方面,从少量标注数据、大量标注数据、海量非标注数据+少量标注数据到海量非标注数据,越来越多数据被利用起来,人的介入越来越少,未来会有更多文本数据、更多其它形态的数据被用起来,更远的未来是任何我们能见到的电子数据,都应该让机器自己从中学到知识或能力。

算法方面,表达能力越来越强,规模越来越大,自主学习能力越来越强,从专用向通用,沿着这个趋势往后,未来Transformer预计够用,同时也需要替代Transformer的新型模型,逐步迈向通用人工智能。

人机关系方面,人的角色逐渐从教导者转向监督者,未来可能会从人机协作、机器向人学习,发展成人向机器学习,最后由机器拓展人类。

最近,LLM引起了人们的关注,因为它们展现出了一些新的能力,比如上下文学习、指令遵循和循序渐进的推理。这些能力使得LLM能够在各种任务中表现出色,而不仅仅局限于特定领域。

为了使LLM发挥最佳性能,需要注意一些关键技术,比如缩放、训练、能力激发、对齐调优和工具利用。其中,缩放是至关重要的,因为大规模的模型容量对于涌现新能力至关重要。而训练LLM是一项挑战,因为模型巨大,需要使用分布式训练算法和各种优化技巧来确保模型性能。此外,对LLM进行能力激发和对齐调优也是必不可少的,以确保它们能够在实际应用中表现良好且符合安全和责任的要求。

  • 神经网络是一种受到人类神经系统启发而设计的计算模型,用于处理复杂的信息处理任务。它由大量的基本计算单元(称为神经元)组成,并通过它们之间的连接来进行信息传递和处理。
    这些神经元通常被组织成层次结构,包括输入层、隐藏层和输出层。输入层接收原始数据输入,隐藏层进行数据转换和特征提取,而输出层生成最终的预测或分类结果。
    神经网络的训练过程通常通过反向传播算法来实现,该算法通过不断调整网络参数来最小化预测结果与实际结果之间的误差。在训练过程中,神经网络会逐渐调整连接权重,以便更准确地捕获输入数据之间的模式和关系。
    神经网络已经被成功应用于各种领域,包括计算机视觉、自然语言处理、语音识别等。随着深度学习技术的发展,深度神经网络(Deep Neural Networks)已经成为了许多任务中最有效的方法之一。
  • Transformer架构是一种用于自然语言处理(NLP)和其他序列转换任务的深度学习模型架构。它于2017年由Google的研究人员提出,并在提出后不久就成为了NLP领域的主流模型。Transformer的设计是为了解决传统循环神经网络(RNN)和长短期记忆网络(LSTM)等模型在处理长序列时存在的限制。
    Transformer架构的核心思想是自注意力机制(Self-Attention),它允许模型在输入序列的不同位置之间建立关联,从而更好地捕捉长距离依赖关系。Transformer由编码器和解码器两部分组成,每个部分都包含多个堆叠的层。编码器负责将输入序列编码为一系列表示,而解码器则将这些表示解码为目标序列。
    除了自注意力机制,Transformer还采用了残差连接和层归一化等技术来加速训练并提高模型的表现。这种架构的设计使得Transformer在处理各种NLP任务时表现出色,包括语言建模、文本分类、机器翻译等。Transformer的成功极大地推动了NLP领域的发展,并成为了许多先进模型的基础,如GPT系列、BERT等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1453533.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

php switch、for、foreach、while、do...while

php switch 1. switch2. for循环3. foreach4. while、do...while 1. switch <?php$height 190;switch ($height) {case 160:echo 太矮了;break; //跳出本次循环case 170:echo 还行吧;break; //跳出本次循环case 180:echo 帅哥;break; //跳出本次循环default:echo 迷; }2.…

初始Git及Linux Centos下安装Git

文章目录 前言版本控制器注意Git安装 前言 不知道你⼯作或学习时&#xff0c;有没有遇到这样的情况&#xff1a;我们在编写各种⽂档时&#xff0c;为了防⽌⽂档丢失&#xff0c;更改失误&#xff0c;失误后能恢复到原来的版本&#xff0c;不得不复制出⼀个副本&#xff0c;⽐如…

springboot196高校教师科研管理系统

Spring Boot高校教师科研管理系统设计与实现 摘 要 社会发展日新月异&#xff0c;用计算机应用实现数据管理功能已经算是很完善的了&#xff0c;但是随着移动互联网的到来&#xff0c;处理信息不再受制于地理位置的限制&#xff0c;处理信息及时高效&#xff0c;备受人们的喜…

(八)【Jmeter】线程(Threads(Users))之bzm - Concurrency Thread Group

简述 操作路径如下: 作用:模拟一定时间段内达到指定并发数的用户访问。配置:设置目标并发数、启动时间、持续时间等参数。使用场景:测试应用程序在达到一定并发用户数时的性能表现。优点:能够模拟实际并发访问的增长和稳定过程。缺点:主要关注并发数,可能无法模拟真实…

C高级D5作业

1.#!/bin/bash read -p "请输入一个字符>>" -n 1 c echo case $c in [[:lower:]]) echo "小写" ;; [[:upper:]]) echo "大写" ;; [1-9]) echo "数字" ;; …

如何实现Vuex数据持久化

Vuex是一个非常流行的状态管理工具&#xff0c;它可以帮助我们在Vue.js应用中管理和共享数据。然而&#xff0c;当应用重新加载或刷新时&#xff0c;Vuex的状态会被重置&#xff0c;这就导致了数据的丢失。那么&#xff0c;如何才能实现Vuex的数据持久化呢&#xff1f;让我们一…

【自然语言处理】seq2seq模型—机器翻译

清华大学驭风计划课程链接 学堂在线 - 精品在线课程学习平台 (xuetangx.com) 代码和报告均为本人自己实现&#xff08;实验满分&#xff09;&#xff0c;只展示主要任务实验结果&#xff0c;如果需要详细的实验报告或者代码可以私聊博主 有任何疑问或者问题&#xff0c;也欢…

SECS/GEM的HSMS通讯?金南瓜方案

High Speed SECS Message Service (HSMS) 是一种基于 TCP/IP 的协议&#xff0c;它使得 SECS 消息通信更加快速。这通常用作设备间通信的接口。 HSMS 状态逻辑变化&#xff08;序列&#xff09;&#xff1a; 1.Not Connected&#xff1a;准备初始化 TCP/IP 连接&#xff0c;但尚…

使用Autodl云服务器或其他远程机实现在本地部署知识图谱数据库Neo4j

本篇博客的目的在于提高读者的使用效率 温馨提醒&#xff1a;以下操作均可在无卡开机状态下就可完成 一.安装JDK 和 Neo4j 1.1 ssh至云服务器 打开你的pycharm或者其他IDE工具或者本地终端&#xff0c;ssh连接到autodl的服务器。(这一步很简单如下图) 1.2 安装JDK 由于我…

入门OpenCV:图像阈值处理

基本概念 图像阈值是一种简单、高效的图像分割方法&#xff0c;目的是将图像转换成二值图像。这个过程涉及比较像素值和阈值&#xff0c;根据比较结果来确定每个像素点的状态&#xff08;前景或背景&#xff09;。图像阈值在处理二维码、文本识别、物体跟踪等领域中非常有用。…

PLC_博图系列☞LAD

PLC_博图系列☞LAD 文章目录 PLC_博图系列☞LAD背景介绍LAD优势局限 LAD元素 关键字&#xff1a; PLC、 西门子、 博图、 Siemens 、 LAD 背景介绍 这是一篇关于PLC编程的文章&#xff0c;特别是关于西门子的博图软件。我并不是专业的PLC编程人员&#xff0c;也不懂电路&a…

[0]是数字的最右边

像这一段代码&#xff0c;把控制信号Ctrl的值&#xff0c;根据此时计数器的值&#xff0c;从Ctrl[0]到Ctrl[7]赋值给led。 之前的理解错误 之前脑子昏头了&#xff0c;看下面的这个图一直觉得不对&#xff0c;才发现这个Ctrl的值我应该从最右边读&#xff0c;即控制信号为Ctrl…

【项目实现】自主HTTP服务器

自主HTTP服务器 项目介绍网络协议栈介绍协议分层 数据的封装与分用数据的封装与分用 HTTP相关知识介绍HTTP的特点 URL格式URI、URL、URNHTTP的协议格式HTTP的请求方法HTTP的状态码HTTP常见的Header CGI机制介绍CGI机制的概念CGI机制的实现步骤CGI机制的意义 日志编写套接字相关…

萨科微半导体宋仕强介绍说

萨科微半导体宋仕强介绍说&#xff0c;电源管理芯片是指在电子设备系统中&#xff0c;负责对电能的变换、分配、检测等进行管理的芯片&#xff0c;其性能和可靠性直接影响电子设备的工作效率和使用寿命&#xff0c;是电子设备中的关键器件。萨科微slkor&#xff08;www.slkormi…

智慧城管建设方案

第5章智慧城管可视化平台 5.1 视频综合管理平台 5.1.1 平台架构 整个视频监控管理平台在架构上分为五个层次&#xff0c;底层是基础硬件支撑层和基础软件支撑层&#xff0c;是支持整个系统运行必要的系统硬件和环境&#xff0c;网络基础设施包括了电子政务网、视频监控专网、…

vue3之setup的基本使用

setup是一个全新的配置项&#xff0c;值是一个函数&#xff0c;既然是配置项&#xff0c;是否与data、methods是兄弟&#xff1f; 没错&#xff0c;确实是兄弟关系&#xff0c;只不过到了vue3&#xff0c;就不怎么使用data这些配置项&#xff0c;会使用setup&#xff0c;让我为…

文件上传漏洞--Upload-labs--Pass02--Content-Type绕过

一、什么是 Content-Type 我们在上传文件时利用 Burpsuite 进行抓包&#xff0c;如下图所示&#xff1a; 上传文件后台的源代码可能会对 Content-Type 进行规定&#xff0c;设置白名单 或 黑名单&#xff0c;这时就要利用Content-Type绕过上传含有恶意代码的 php文件。 二、代…

链表总结 -- 《数据结构》-- c/c++

链表的概念 链表是一种物理存储结构上非连续存储结构&#xff0c;数据元素的逻辑顺序是通过链表中的引用链接次序实现的 。 链表是一种通过指针串联在一起的线性结构&#xff0c;每一个节点由两部分组成&#xff0c;一个是数据域一个是指针域&#xff08;存放指向下一个节点的…

OpenAI全新发布文生视频模型:Sora!

OpenAI官网原文链接&#xff1a;https://openai.com/research/video-generation-models-as-world-simulators#fn-20 我们探索视频数据生成模型的大规模训练。具体来说&#xff0c;我们在可变持续时间、分辨率和宽高比的视频和图像上联合训练文本条件扩散模型。我们利用对视频和…

解锁Spring Boot中的设计模式—05.策略模式:探索【策略模式】的奥秘与应用实践!

1.策略者工厂模式&#xff08;Map版本&#xff09; 1.需求背景 假设有一个销售系统&#xff0c;需要根据不同的促销活动对商品进行打折或者其他形式的优惠。这些促销活动可以是针对不同商品类别的&#xff0c;比如男装、女装等。 2.需求实现 活动策略接口&#xff1a;定义了…