当谈及实例分割时,人们往往只会提到一些早期的经典算法,比如 PSP-Net、DeepLabv3、DeepLabv3+ 和 U-Net。然而,实例分割领域已经在过去的五六年中蓬勃发展,涌现出许多新的算法。今天,让我们一起探索这个算法库,它包含了众多最新的实例分割算法。后面,我将会为大家详细介绍如何使用这个算法库。总的来说,若你关注实例分割领域的最新进展,这个算法库值得你拥有。

1、目前支持的算法:
 - [x] [SAN (CVPR'2023)](configs/san/)
 - [x] [VPD (ICCV'2023)](configs/vpd)
 - [x] [DDRNet (T-ITS'2022)](configs/ddrnet)
 - [x] [PIDNet (ArXiv'2022)](configs/pidnet)
 - [x] [Mask2Former (CVPR'2022)](configs/mask2former)
 - [x] [MaskFormer (NeurIPS'2021)](configs/maskformer)
 - [x] [K-Net (NeurIPS'2021)](configs/knet)
 - [x] [SegFormer (NeurIPS'2021)](configs/segformer)
 - [x] [Segmenter (ICCV'2021)](configs/segmenter)
 - [x] [DPT (ArXiv'2021)](configs/dpt)
 - [x] [SETR (CVPR'2021)](configs/setr)
 - [x] [STDC (CVPR'2021)](configs/stdc)
 - [x] [BiSeNetV2 (IJCV'2021)](configs/bisenetv2)
 - [x] [CGNet (TIP'2020)](configs/cgnet)
 - [x] [PointRend (CVPR'2020)](configs/point_rend)
 - [x] [DNLNet (ECCV'2020)](configs/dnlnet)
 - [x] [OCRNet (ECCV'2020)](configs/ocrnet)
 - [x] [ISANet (ArXiv'2019/IJCV'2021)](configs/isanet)
 - [x] [Fast-SCNN (ArXiv'2019)](configs/fastscnn)
 - [x] [FastFCN (ArXiv'2019)](configs/fastfcn)
 - [x] [GCNet (ICCVW'2019/TPAMI'2020)](configs/gcnet)
 - [x] [ANN (ICCV'2019)](configs/ann)
 - [x] [EMANet (ICCV'2019)](configs/emanet)
 - [x] [CCNet (ICCV'2019)](configs/ccnet)
 - [x] [DMNet (ICCV'2019)](configs/dmnet)
 - [x] [Semantic FPN (CVPR'2019)](configs/sem_fpn)
 - [x] [DANet (CVPR'2019)](configs/danet)
 - [x] [APCNet (CVPR'2019)](configs/apcnet)
 - [x] [NonLocal Net (CVPR'2018)](configs/nonlocal_net)
 - [x] [EncNet (CVPR'2018)](configs/encnet)
 - [x] [DeepLabV3+ (CVPR'2018)](configs/deeplabv3plus)
 - [x] [UPerNet (ECCV'2018)](configs/upernet)
 - [x] [ICNet (ECCV'2018)](configs/icnet)
 - [x] [PSANet (ECCV'2018)](configs/psanet)
 - [x] [BiSeNetV1 (ECCV'2018)](configs/bisenetv1)
 - [x] [DeepLabV3 (ArXiv'2017)](configs/deeplabv3)
 - [x] [PSPNet (CVPR'2017)](configs/pspnet)
 - [x] [ERFNet (T-ITS'2017)](configs/erfnet)
 - [x] [UNet (MICCAI'2016/Nat. Methods'2019)](configs/unet)
 - [x] [FCN (CVPR'2015/TPAMI'2017)](configs/fcn)
|   方法  |   时间  |   题目  | 
|   dsdl  |   Standard Description Language for DataSet  | |
|   san  |   2013  |   Side adapter network for open-vocabulary semantic segmentation  | 
|   unet  |   2015  |   U-net: Convolutional networks for biomedical image segmentation  | 
|   erfnet  |   2017  |   Erfnet: Efficient residual factorized convnet for real-time semantic segmentation  | 
|   fcn  |   2017  |   Fully convolutional networks for semantic segmentation  | 
|   pspnet  |   2017  |   Pyramid Scene Parsing Network  | 
|   bisenetv1_r18-d32  |   2018  |   Bisenet: Bilateral segmentation network for real-time semantic segmentation  | 
|   encnet  |   2018  |   Context Encoding for Semantic Segmentation  | 
|   icnet_r50-d8  |   2018  |   Icnet for real-time semantic segmentation on high-resolution images  | 
|   nonlocal  |   2018  |   Non-local neural networks  | 
|   psanet  |   2018  |   Psanet: Point-wise spatial attention network for scene parsing  | 
|   upernet  |   2018  |   Unified perceptual parsing for scene understanding  | 
|   ann  |   2019  |   Asymmetric non-local neural networks for semantic segmentation  | 
|   apcnet  |   2019  |   Adaptive Pyramid Context Network for Semantic Segmentation  | 
|   ccnet  |   2019  |   CCNet: Criss-Cross Attention for Semantic Segmentation  | 
|   danet  |   2019  |   Dual Attention Network for Scene Segmentation  | 
|   emanet_r50-d8  |   2019  |   Expectation-maximization attention networks for semantic segmentation  | 
|   fastfcn  |   2019  |   Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation  | 
|   fast_scnn  |   2019  |   Fast-scnn: Fast semantic segmentation network  | 
|   hrnet  |   2019  |   Deep High-Resolution Representation Learning for Human Pose Estimation  | 
|   gcnet  |   2019  |   Gcnet: Non-local networks meet squeeze-excitation networks and beyond  | 
|   sem_fpn  |   2019  |   Panoptic feature pyramid networks  | 
|   cgNet  |   2020  |   Cgnet: A light-weight context guided network for semantic segmentation  | 
|   dnlnet  |   2020  |   Disentangled Non-Local Neural Networks  | 
|   ocrnet  |   2020  |   Object-Contextual Representations for Semantic Segmentation  | 
|   pointrend  |   2020  |   Pointrend: Image segmentation as rendering  | 
|   setr  |   2020  |   Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers  | 
|   bisenetv2  |   2021  |   Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation  | 
|   dpt  |   2021  |   Vision Transformers for Dense Prediction  | 
|   isanet_r50-d8  |   2021  |   OCNet: Object Context for Semantic Segmentation  | 
|   knet  |   2021  |   {K-Net: Towards} Unified Image Segmentation  | 
|   mae  |   2021  |   Masked autoencoders are scalable vision learners  | 
|   mask2former  |   2021  |   Per-Pixel Classification is Not All You Need for Semantic Segmentation  | 
|   maskformer  |   2021  |   Per-pixel classification is not all you need for semantic segmentation  | 
|   segformer  |   2021  |   SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers  | 
|   segmenter  |   2021  |   Segmenter: Transformer for semantic segmentation  | 
|   stdc  |   2021  |   Rethinking BiSeNet For Real-time Semantic Segmentation  | 
|   Beit  |   2022  |   {BEiT}: {BERT} Pre-Training of Image Transformers  | 
|   convnext  |   2022  |   A ConvNet for the 2020s  | 
|   ddrnet  |   2022  |   Deep Dual-Resolution Networks for Real-Time and Accurate Semantic Segmentation of Traffic Scenes  | 
|   pidnet  |   2022  |   PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller  | 
|   poolformer  |   2022  |   Metaformer is actually what you need for vision  | 
|   segnext  |   2022  |   SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation  | 
|   VPD  |   2023  |   Unleashing Text-to-Image Diffusion Models for Visual Perception  | 
2、支持的骨干网络:
- [x] ResNet (CVPR'2016)
 - [x] ResNeXt (CVPR'2017)
 - [x] [HRNet (CVPR'2019)](configs/hrnet)
 - [x] [ResNeSt (ArXiv'2020)](configs/resnest)
 - [x] [MobileNetV2 (CVPR'2018)](configs/mobilenet_v2)
 - [x] [MobileNetV3 (ICCV'2019)](configs/mobilenet_v3)
 - [x] [Vision Transformer (ICLR'2021)](configs/vit)
 - [x] [Swin Transformer (ICCV'2021)](configs/swin)
 - [x] [Twins (NeurIPS'2021)](configs/twins)
 - [x] [BEiT (ICLR'2022)](configs/beit)
 - [x] [ConvNeXt (CVPR'2022)](configs/convnext)
 - [x] [MAE (CVPR'2022)](configs/mae)
 - [x] [PoolFormer (CVPR'2022)](configs/poolformer)
 - [x] [SegNeXt (NeurIPS'2022)](configs/segnext)
3、支持的数据集:
 - [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#cityscapes)
 - [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#pascal-voc)
 - [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#ade20k)
 - [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#pascal-context)
 - [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-10k)
 - [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-164k)
 - [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#chase-db1)
 - [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#drive)
 - [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#hrf)
 - [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#stare)
 - [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#dark-zurich)
 - [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#nighttime-driving)
 - [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#loveda)
 - [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isprs-potsdam)
 - [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isprs-vaihingen)
 - [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isaid)
 - [x] [Mapillary Vistas](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#mapillary-vistas-datasets)
 - [x] [LEVIR-CD](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#levir-cd)
 - [x] [BDD100K](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#bdd100K)
 - [x] [NYU](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#nyu)
4、自定义个人任务:
当然如果以上无法满足,这里面提供了详细的教程与方便的接口,以供制作自己的数据集和设计自己的算法、主干网络、损失函数等。
5、参考文章:
- Welcome to MMSegmentation’s documentation! — MMSegmentation 1.2.2 documentation
 - open-mmlab/mmsegmentation: OpenMMLab Semantic Segmentation Toolbox and Benchmark. (github.com)
 


















