目录
一、树
二、二分搜索树
1.二叉树
2.二分搜索树
三、代码实现
1.树的构建
2.获取树中结点的个数
3.添加元素
4.查找元素
(1)查找元素是否存在
(2)查找最小元素
(3)查找最大元素
5.二分搜索树的遍历
(1)前序遍历:
(2)中序遍历:
(3)后序遍历:
(4)层序遍历:
6.删除操作
(1)删除最小元素
(2)删除最大元素
(3)删除任意元素
(4)删除根节点
一、树
树结构本身是一种天然的组织结构
是一个高效的查询内容的结构
二、二分搜索树
1.二叉树
特点:1.只有唯一的一个根节点
2.每个结点最多有两个孩子
3.每个结点最多有一个父亲
4.二叉树具有天然的递归结构(左右子树也是二叉树)
5.叶子结点出现在二叉树的最底层,除叶子结点之外的其它结点都有两个孩子结点。
2.二分搜索树
是特殊的二叉树
每个节点都大于左子树的所有结点,都小于右子树的所有结点
注意:存储的元素必须具有可比性
因为二分搜索树也是二叉树,也具有天然的递归结构,所以许多方法都可以使用递归的思想去实现
三、代码实现
1.树的构建
需要的元素有:根节点,结点,频率(如果添加的元素有重复元素),结点的值,索引,结点个数
//树的结点
    private static class Node<T> {
        private final T ele;//结点的值
        private int frequence;//频率
        private Node<T> left, right;//分别指向左右孩子的索引
        public Node(T ele) {
            this.ele = ele;
            this.left = this.right = null;
        }
    }
    //树对应的属性
    private Node<T> root;//树的根节点
    private int size;//结点的个数
    //构建树
    public BinearySeachTree() {
        this.root = null;
        this.size = 0;
    } 
在给元素添加泛型后,就不能直接比较,所以在开始就继承Comparable来实现元素的比较
public class BinearySeachTree<T extends Comparable<T>>{
} 
2.获取树中结点的个数
//获取树中结点的个数
    public int getSize() {
        return this.size;
    } 
3.添加元素
将元素添加到二分搜索树的过程中,要注意将大的元素放在结点的右边,小的元素放在左边

再添加元素时,需要找到对应的位置,则可以使用递归的思想。
如果添加的值小于结点的值,则查找结点左孩子,如果还是小于结点,则继续查找
//向树中添加结点
    public void add(T ele) {
        //更新根结点
        this.root = addDG(this.root, ele);
    }
    //语义:向以root为根的二分搜索树中添加元素ele
    private Node<T> addDG(Node<T> root, T ele) {
        //递归终止条件
        if (root == null) {
            this.size++;
            return new Node<T>(ele);
        }
        //递归操作
        if (root.ele.compareTo(ele) > 0) {
            root.left = addDG(root.left, ele);
        } else if (root.ele.compareTo(ele) < 0) {
            root.right = addDG(root.right, ele);
        } else {
            //更新频率
            root.frequence++;
        }
        return root;
    } 
4.查找元素
(1)查找元素是否存在
查找元素是否在二叉树中,查找每一个结点,如果查找元素比当前节点小,就在左子树里重新查找,如果查找元素比当前节点大,就在右子树里重新查找
 //查询的方法
    public boolean search(T ele) {
        return searchDG(this.root, ele);
    }
    //语义:从以root为根的二分搜索树中查找元素ele
    private boolean searchDG(Node<T> root, T ele) {
        //递归终止的条件
        if (root == null) {
            return false;
        }
        //递归操作
        if (root.ele.compareTo(ele) == 0) {
            return true;
        } else if (root.ele.compareTo(ele) > 0) {
            return searchDG(root.left, ele);
        } else {
            return searchDG(root.right, ele);
        }
    } 
(2)查找最小元素
二分搜索树中最左边的元素
 //找树中的最小元素
    public T getMinValue() {
        if (this.isEmpty()) {
            return null;
        }
        Optional<Node<T>> optional = getMinNode();
        return optional.get().ele;
    }
//直接查找
private Optional<Node<T>> getMinNode() {
        if (this.root == null) {
            return Optional.empty();
        }
        //一直向左查找
        Node<T> node = this.root;
        while (node.left != null) {
            node = node.left;
        }
        return Optional.of(node);
    }
//利用递归方法查找
    //语义:在以Node为根结点的树中查找最小结点
    private Optional<Node<T>> getMinNode(Node<T> node) {
        if (node.left == null) {
            return Optional.of(node);
        }
        return getMinNode(node.left);
    } 
(3)查找最大元素
二分搜索树中最右边的元素
//找树中的最大元素
    public T getMaxValue() {
        if (this.isEmpty()) {
            return null;
        }
        Optional<Node<T>> optional = getMaxNode(this.root);
        return optional.get().ele;
    }
 //语义:在以Node为根结点的树中查找最大结点
    private Optional<Node<T>> getMaxNode(Node<T> node) {
        if (node.right == null) {
            return Optional.of(node);
        }
        return getMaxNode(node.right);
    }
 
5.二分搜索树的遍历
树的遍历有四种:前序遍历;中序遍历;后序遍历;层序遍历

(1)前序遍历:
首先打印根节点,然后遍历左子树,最后是右子树
【28,16,13,22,30,29,42】
//前序遍历
    public void preTravel() {
        List<AbstractMap.SimpleEntry<T, Integer>> list = new ArrayList<>();
        preTravelDG(this.root, list);
        String str = list.stream().map(item -> "[" + item.getKey() + ":" + item.getValue() + "]").collect(Collectors.joining("-"));
        System.out.println(str);
    }
 //前序遍历以root为根的树,讲解稿保存在list中
    private void preTravelDG(Node<T> root, List<AbstractMap.SimpleEntry<T, Integer>> list) {
        //递归终止条件
        if (root == null) {
            return;
        }
        //递归操作
        list.add(new AbstractMap.SimpleEntry<>(root.ele, root.frequence));
        //遍历左子树
        preTravelDG(root.left, list);
        //遍历右子树
        preTravelDG(root.right, list);
    } 
(2)中序遍历:
先遍历左子树,在打印中间结点,最后遍历右子树
【13,16,22,28,29,30,42】
//中序遍历
    public void midTravel() {
        List<AbstractMap.SimpleEntry<T, Integer>> list = new ArrayList<>();
        midTravelDG(this.root, list);
        String str = list.stream().map(item -> item.toString()).collect(Collectors.joining("-"));
        System.out.println(str);
    }
//中序遍历以root为根的树,讲解稿保存在list中
    private void midTravelDG(Node<T> root, List<AbstractMap.SimpleEntry<T, Integer>> list) {
        //递归终止条件
        if (root == null) {
            return;
        }
        //递归操作
        //遍历左子树
        preTravelDG(root.left, list);
        list.add(new AbstractMap.SimpleEntry<>(root.ele, root.frequence));
        //遍历右子树
        preTravelDG(root.right, list);
    } 
(3)后序遍历:
先遍历左子树,在遍历右子树,最后在打印中间结点
【13,22,16,29,42,30,28】
 //后序遍历
    public void sufTravel() {
        List<AbstractMap.SimpleEntry<T, Integer>> list = new ArrayList<>();
        sufTravelDG(this.root, list);
        String str = list.stream().map(item -> item.toString()).collect(Collectors.joining("-"));
        System.out.println(str);
    }
 //后序遍历以root为根的树,讲解稿保存在list中
    private void sufTravelDG(Node<T> root, List<AbstractMap.SimpleEntry<T, Integer>> list) {
        //递归终止条件
        if (root == null) {
            return;
        }
        //递归操作
        //遍历左子树
        preTravelDG(root.left, list);
        //遍历右子树
        preTravelDG(root.right, list);
        list.add(new AbstractMap.SimpleEntry<>(root.ele, root.frequence));
    } 
可以看到,先中后序遍历的代码区别只是在递归最后将元素添加到list的位置不同而已
(4)层序遍历:
一层一层的打印
【28,16,30,13,22,29,42】
//层序遍历
    public void levelTravel() {
        //判断树是否为空
        if (this.isEmpty()) {
            return;
        }
        Queue<AbstractMap.SimpleEntry<Node<T>, Integer>> queue = new LinkedList<>();
        //1.先将根结点入队
        queue.add(new AbstractMap.SimpleEntry<>(this.root, 1));
        //2.遍历队列
        while (!queue.isEmpty()) {
            //2-1.出队
            AbstractMap.SimpleEntry<Node<T>, Integer> pair = queue.poll();
            //结点
            Node<T> node = pair.getKey();
            //层
            int level = pair.getValue();
            ;
            System.out.println("[val:" + node.ele + ",level:" + level + "]");
            //2-2.判断左右子树是否为空
            if (node.left != null) {
                queue.add(new AbstractMap.SimpleEntry<>(node.left, level + 1));
            }
            if (node.right != null) {
                queue.add(new AbstractMap.SimpleEntry<>(node.right, level + 1));
            }
        }
    }
 
6.删除操作
删除的操作中,需要注意删除后二分搜索树也会因此改变,所以要分情况讨论
(1)删除最小元素
删除最小元素并不需要改变树,只需要失去关联关系即可
 //从树中删除最小的结点
    public T removeMinNode() {
        T result = getMinValue();
        if (result == null) {
            return null;
        }
        //更新根结点
        this.root = removeMinNode(this.root);
        return result;
    }
    //语义:从以Node为根的二分搜索树中删除元素最小的结点
    private Node<T> removeMinNode(Node<T> node) {
        //递归终止条件
        if (node.left == null) {
            //删除操作
            //1.记录右子树
            Node<T> rightTree = node.right;
            //失去关联关系
            node.right = null;
            //3.跟新size
            this.size--;
            return rightTree;
        }
        //递归操作
        node.left = removeMinNode(node.left);
        return node;
    }
 
(2)删除最大元素
跟删除最小元素一样,只需要失去关联关系即可
//从树中删除最大的结点
    public T removeMaxNode() {
        T result = getMaxValue();
        if (result == null) {
            return null;
        }
        //更新根结点
        this.root = removeMaxNode(this.root);
        return result;
    }
    //语义:从以Node为根的二分搜索树中删除元素最大的结点
    private Node<T> removeMaxNode(Node<T> node) {
        //递归终止条件
        if (node.right == null) {
            //删除操作
            //1.记录左子树
            Node<T> leftTree = node.left;
            //失去关联关系
            node.left = null;
            //3.跟新size
            this.size--;
            return leftTree;
        }
        //递归操作
        node.right = removeMaxNode(node.right);
        return node;
    }
 
(3)删除任意元素
在删除任意元素中,需要考虑删除结点有没有左右子树
//语义:从以Node为根的二分搜索树中删除值为ele的结点
    private Node<T> remove(Node<T> node, T ele) {
        //递归终止的条件
        //没有找到
        if (node == null) {
            return null;
        }
        //找到了
        if (node.ele.compareTo(ele) == 0) {
            this.size--;
            //Node就是要删除的结点
            if (node.left == null) {
                Node<T>rightNode=node.right;
                node.right=null;
                return rightNode;
            } else if (node.right == null) {
                Node<T>leftNode=node.left;
                node.left=null;
                return leftNode;
            } else {
                Node<T> suffixNode = getMinNode(node.right).get();
                suffixNode.right=removeMinNode(node.right);
                suffixNode.left=node.left;
                this.size++;
                //失去关联关系
                node.left=node.right=null;
                return suffixNode;
            }
        }
        //递归操作
        if (node.ele.compareTo(ele) > 0) {
            node.left = remove(node.left, ele);
        } else {
            node.right = remove(node.right, ele);
        }
        return node;
    }
 
(4)删除根节点
直接删除关联关系即可
 //删除根节点
    public void removeRoot(){
        if(this.root==null){
            return;
        }
        remove(this.root.ele);
    } 
四、完整代码
package com.algo.lesson.lesson04;
import java.util.*;
import java.util.stream.Collectors;
//二分搜索树
/*
保存到结点中的元素值必须具有可比性
 */
public class BinearySeachTree<T extends Comparable<T>> {
    //树的结点
    private static class Node<T> {
        private final T ele;//结点的值
        private int frequence;//频率
        private Node<T> left, right;//分别指向左右孩子的索引
        public Node(T ele) {
            this.ele = ele;
            this.left = this.right = null;
        }
    }
    //树对应的属性
    private Node<T> root;//树的根节点
    private int size;//结点的个数
    //构建树
    public BinearySeachTree() {
        this.root = null;
        this.size = 0;
    }
    //获取树中结点的个数
    public int getSize() {
        return this.size;
    }
    //向树中添加结点
    public void add(T ele) {
        //更新根结点
        this.root = addDG(this.root, ele);
    }
    //语义:向以root为根的二分搜索树中添加元素ele
    private Node<T> addDG(Node<T> root, T ele) {
        //递归终止条件
        if (root == null) {
            this.size++;
            return new Node<T>(ele);
        }
        //递归操作
        if (root.ele.compareTo(ele) > 0) {
            root.left = addDG(root.left, ele);
        } else if (root.ele.compareTo(ele) < 0) {
            root.right = addDG(root.right, ele);
        } else {
            //更新频率
            root.frequence++;
        }
        return root;
    }
    //查询的方法
    public boolean search(T ele) {
        return searchDG(this.root, ele);
    }
    //语义:从以root为根的二分搜索树中查找元素ele
    private boolean searchDG(Node<T> root, T ele) {
        //递归终止的条件
        if (root == null) {
            return false;
        }
        //递归操作
        if (root.ele.compareTo(ele) == 0) {
            return true;
        } else if (root.ele.compareTo(ele) > 0) {
            return searchDG(root.left, ele);
        } else {
            return searchDG(root.right, ele);
        }
    }
    //二分搜索树的遍历
    //前序遍历
    public void preTravel() {
        List<AbstractMap.SimpleEntry<T, Integer>> list = new ArrayList<>();
        preTravelDG(this.root, list);
        String str = list.stream().map(item -> "[" + item.getKey() + ":" + item.getValue() + "]").collect(Collectors.joining("-"));
        System.out.println(str);
    }
    //中序遍历
    public void midTravel() {
        List<AbstractMap.SimpleEntry<T, Integer>> list = new ArrayList<>();
        midTravelDG(this.root, list);
        String str = list.stream().map(item -> item.toString()).collect(Collectors.joining("-"));
        System.out.println(str);
    }
    //后序遍历
    public void sufTravel() {
        List<AbstractMap.SimpleEntry<T, Integer>> list = new ArrayList<>();
        sufTravelDG(this.root, list);
        String str = list.stream().map(item -> item.toString()).collect(Collectors.joining("-"));
        System.out.println(str);
    }
    //前序遍历以root为根的树,讲解稿保存在list中
    private void preTravelDG(Node<T> root, List<AbstractMap.SimpleEntry<T, Integer>> list) {
        //递归终止条件
        if (root == null) {
            return;
        }
        //递归操作
        list.add(new AbstractMap.SimpleEntry<>(root.ele, root.frequence));
        //遍历左子树
        preTravelDG(root.left, list);
        //遍历右子树
        preTravelDG(root.right, list);
    }
    //中序遍历以root为根的树,讲解稿保存在list中
    private void midTravelDG(Node<T> root, List<AbstractMap.SimpleEntry<T, Integer>> list) {
        //递归终止条件
        if (root == null) {
            return;
        }
        //递归操作
        //遍历左子树
        preTravelDG(root.left, list);
        list.add(new AbstractMap.SimpleEntry<>(root.ele, root.frequence));
        //遍历右子树
        preTravelDG(root.right, list);
    }
    //后序遍历以root为根的树,讲解稿保存在list中
    private void sufTravelDG(Node<T> root, List<AbstractMap.SimpleEntry<T, Integer>> list) {
        //递归终止条件
        if (root == null) {
            return;
        }
        //递归操作
        //遍历左子树
        preTravelDG(root.left, list);
        //遍历右子树
        preTravelDG(root.right, list);
        list.add(new AbstractMap.SimpleEntry<>(root.ele, root.frequence));
    }
    //判断树是否为空
    public boolean isEmpty() {
        return this.size == 0;
    }
    //层序遍历
    public void levelTravel() {
        //判断树是否为空
        if (this.isEmpty()) {
            return;
        }
        Queue<AbstractMap.SimpleEntry<Node<T>, Integer>> queue = new LinkedList<>();
        //1.先将根结点入队
        queue.add(new AbstractMap.SimpleEntry<>(this.root, 1));
        //2.遍历队列
        while (!queue.isEmpty()) {
            //2-1.出队
            AbstractMap.SimpleEntry<Node<T>, Integer> pair = queue.poll();
            //结点
            Node<T> node = pair.getKey();
            //层
            int level = pair.getValue();
            ;
            System.out.println("[val:" + node.ele + ",level:" + level + "]");
            //2-2.判断左右子树是否为空
            if (node.left != null) {
                queue.add(new AbstractMap.SimpleEntry<>(node.left, level + 1));
            }
            if (node.right != null) {
                queue.add(new AbstractMap.SimpleEntry<>(node.right, level + 1));
            }
        }
    }
    //找树中的最小元素
    public T getMinValue() {
        if (this.isEmpty()) {
            return null;
        }
        Optional<Node<T>> optional = getMinNode();
        return optional.get().ele;
    }
    //找树中的最大元素
    public T getMaxValue() {
        if (this.isEmpty()) {
            return null;
        }
        Optional<Node<T>> optional = getMaxNode(this.root);
        return optional.get().ele;
    }
    private Optional<Node<T>> getMinNode() {
        if (this.root == null) {
            return Optional.empty();
        }
        //一直向左查找
        Node<T> node = this.root;
        while (node.left != null) {
            node = node.left;
        }
        return Optional.of(node);
    }
    //递归
    //语义:在以Node为根结点的树中查找最小结点
    private Optional<Node<T>> getMinNode(Node<T> node) {
        if (node.left == null) {
            return Optional.of(node);
        }
        return getMinNode(node.left);
    }
    //语义:在以Node为根结点的树中查找最大结点
    private Optional<Node<T>> getMaxNode(Node<T> node) {
        if (node.right == null) {
            return Optional.of(node);
        }
        return getMaxNode(node.right);
    }
    //删除操作
    //从树中删除最小的结点
    public T removeMinNode() {
        T result = getMinValue();
        if (result == null) {
            return null;
        }
        //更新根结点
        this.root = removeMinNode(this.root);
        return result;
    }
    //语义:从以Node为根的二分搜索树中删除元素最小的结点
    private Node<T> removeMinNode(Node<T> node) {
        //递归终止条件
        if (node.left == null) {
            //删除操作
            //1.记录右子树
            Node<T> rightTree = node.right;
            //失去关联关系
            node.right = null;
            //3.跟新size
            this.size--;
            return rightTree;
        }
        //递归操作
        node.left = removeMinNode(node.left);
        return node;
    }
    //删除操作
    //从树中删除最大的结点
    public T removeMaxNode() {
        T result = getMaxValue();
        if (result == null) {
            return null;
        }
        //更新根结点
        this.root = removeMaxNode(this.root);
        return result;
    }
    //语义:从以Node为根的二分搜索树中删除元素最大的结点
    private Node<T> removeMaxNode(Node<T> node) {
        //递归终止条件
        if (node.right == null) {
            //删除操作
            //1.记录左子树
            Node<T> leftTree = node.left;
            //失去关联关系
            node.left = null;
            //3.跟新size
            this.size--;
            return leftTree;
        }
        //递归操作
        node.right = removeMaxNode(node.right);
        return node;
    }
    //删除任意结点
    public void remove(T ele) {
        //根据值查找结点
        this.root = remove(this.root, ele);
    }
    //语义:从以Node为根的二分搜索树中删除值为ele的结点
    private Node<T> remove(Node<T> node, T ele) {
        //递归终止的条件
        //没有找到
        if (node == null) {
            return null;
        }
        //找到了
        if (node.ele.compareTo(ele) == 0) {
            this.size--;
            //Node就是要删除的结点
            if (node.left == null) {
                Node<T>rightNode=node.right;
                node.right=null;
                return rightNode;
            } else if (node.right == null) {
                Node<T>leftNode=node.left;
                node.left=null;
                return leftNode;
            } else {
                Node<T> suffixNode = getMinNode(node.right).get();
                suffixNode.right=removeMinNode(node.right);
                suffixNode.left=node.left;
                this.size++;
                //失去关联关系
                node.left=node.right=null;
                return suffixNode;
            }
        }
        //递归操作
        if (node.ele.compareTo(ele) > 0) {
            node.left = remove(node.left, ele);
        } else {
            node.right = remove(node.right, ele);
        }
        return node;
    }
    //删除根节点
    public void removeRoot(){
        if(this.root==null){
            return;
        }
        remove(this.root.ele);
    }
}
 
五、例题
1.700. 二叉搜索树中的搜索

class Solution {
    public TreeNode searchBST(TreeNode root, int val) {
        if(root==null){
            return null;
        }
        if(val==root.val){
            return root;
        }
        return searchBST(val<root.val?root.left:root.right,val);
    }
} 
2.力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

class Solution {
    public TreeNode insertIntoBST(TreeNode root, int val) {
//更新根结点
        return root = addDG(root, val);
    }
    //语义:向以root为根的二分搜索树中添加元素ele
    private TreeNode addDG(TreeNode root, int val) {
        //递归终止条件
        if (root == null) {
            return new TreeNode(val);
        }
        //递归操作
        if (root.val>val) {
            root.left = addDG(root.left, val);
        } else if (root.val<val) {
            root.right = addDG(root.right, val);
        }
        return root;
    }
} 
3.力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> list = new ArrayList<List<Integer>>();
        if (root == null) {
            return list;
        }
        Queue<TreeNode> queue = new LinkedList<TreeNode>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            List<Integer> level = new ArrayList<Integer>();
            int temp = queue.size();
            for (int i = 1; i <= temp; i++) {
                TreeNode node = queue.poll();
                level.add(node.val);
                if (node.left != null) {
                    queue.offer(node.left);
                }
                if (node.right != null) {
                    queue.offer(node.right);
                }
            }
            list.add(level);
        }
        return list;
    }
}
 
                


















