辗转相除法
8 和 12 的最大公因数是 4,记作 gcd(8,12)=4。辗转相除法最重要的规则是:
若 mod 是 a ÷ b 的余数, 则gcd(a, b) = gcd(b, mod),直到a % b == 0时,返回 b的值
gcd(546, 429)
= gcd(429, 117)
= gcd(117, 78)
= gcd(78, 39)
= 39
public int gcb(int a, int b)
{
    int mod = 0;
    do
    {
        mod = a % b;
        a = b;
        b = mod;
    }while (mod != 0);
    return a;	//此时 a 的值==最后一个除数
}
 
质数
判断一个数是否是质数
public boolean isPrime(int num)
{
    int sqrt = (int)Math.sqrt(num);
    for (int i = 2; i <= sqrt; i++)
        if(num % i == 0)
            return false;
    return true;
}
 
计数质数
204. 计数质数 - 力扣(LeetCode)
给定整数 n ,返回 所有小于非负整数 n 的质数的数量 。
示例 1:
输入:n = 10
输出:4
解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7
 
提示:
0 <= n <= 5 * 10
超时的暴力解法
public int countPrimes(int n)
{
    int count = 0;
    // 0 and 1 are not prime numbers
    for (int i = 2; i < n; i++)
        if(isPrime(i))
            count++;
    return count;
}
public boolean isPrime(int num)
{
    int sqrt = (int)Math.sqrt(num);
    for (int i = 2; i <= sqrt; i++)
        //如果 num 是合数,那 sqrt 两边一定存在一对 nums 的因数  
        if(num % i == 0)
            return false;
    return true;
}
 
时间复杂度:O(n * n^ 1/2)
 空间复杂度:O(1)
一般来说题目里 n 的规模达到 10^5 及以上时,需要实现的程序的时间复杂度最高只能是 O(n logn)
埃氏筛
204. 计数质数 - 力扣(LeetCode)

public int countPrimes(int n)
{
    boolean[] primes = new boolean[n];
    Arrays.fill(primes, true);   //初始化为全部都是质数
    //从2枚举到sqrt(n)(不含)
    for (int i = 2; i * i < n; i++)
    {
        if (primes[i])
            //从i²开始,将所有i的倍数标记为非质数
            //从这里我们就可以理解为什么不用枚举到sqrt(n)了。因为我们只用考虑n-1及以内的数,而sqrt(n)^2 = n
            for (int j = i * i; j < n; j += i)
                primes[j] = false;
    }
    //统计质数的个数
    int count = 0;
    for (int i = 2; i < n; i++)
        if (primes[i]) count++;
    return count;
}
 

丑数
把只包含质因子 2、3 和 5 的数称作丑数(Ugly Number)
根据丑数的定义,0 和负整数不是丑数。
当 n>0 时,若 n 是丑数,则 n 可以写成 n = 2^a + 3^b + 5^c 的形式,其中 a,b,c 都是非负整数。
特别地,当 a,b,c 都是 0 时,n=1。所以1也是丑数
对 n 反复除以 2,3,5,直到 n 不再包含质因数 2,3,5。若剩下的数等于 1,则说明 n 不包含其他质因数,n是丑数;否则,说明n包含其他质因数,n不是丑数。
public boolean isUglyNum(int num)
{
    if (num <= 0)
        return false;
    int[] factors = {2, 3, 5};
    //如果num能整除任何一个因子,则继续除以这个因子
    //每次整除会使以factor为底的指数减一
    //当指数为零时,跳出while循环
    for (int factor : factors)
        while (num % factor == 0)
            num =  num / factor;
    //若num能被所有质因子整除,则num最后==1,即num为丑数
    return  num == 1;
}
                


















