文章目录
- 4.1 链表(Linked List)介绍
- 4.2 单链表的应用实例
- 4.3 单链表面试题(新浪、百度、腾讯)
- 4.4 双向链表应用实例
- 4.4.1 双向链表的操作分析和实现
- 4.4.2 课堂作业和思路提示
 
- 4.5 单向环形链表应用场景
- 4.6 单向环形链表介绍
- 4.7 Josephu 问题
- 4.8 Josephu 问题的代码实现
4.1 链表(Linked List)介绍
链表是有序的列表,但是它在内存中是存储如下
 
小结上图:
- 链表是以节点的方式来存储,是链式存储
- 每个节点包含 data 域, next 域:指向下一个节点.
- 如图:发现链表的各个节点不一定是连续存储.
- 链表分带头节点的链表和没有头节点的链表,根据实际的需求来确定
  单链表(带头结点) 逻辑结构示意图如下
  
4.2 单链表的应用实例
使用带 head 头的单向链表实现 –水浒英雄排行榜管理完成对英雄人物的增删改查操作, 注: 删除和修改,查找可以考虑学员独立完成,也可带学员完成
-  第一种方法在添加英雄时,直接添加到链表的尾部思路分析示意图: 
  
-  第二种方式在添加英雄时,根据排名将英雄插入到指定位置(如果有这个排名,则添加失败,并给出提示)思路的分析示意图: 
  
-  修改节点功能 
 思路(1) 先找到该节点,通过遍历,(2) temp.name = newHeroNode.name ; temp.nickname= newHeroNode.nickname
-  删除节点 
 思路分析的示意图:
  
-  完成的代码演示: package com.atguigu.linkedlist; import java.util.Stack; public class SingleLinkedListDemo { public static void main(String[] args) { //进行测试 //先创建节点 HeroNode hero1 = new HeroNode(1, "宋江", "及时雨"); HeroNode hero2 = new HeroNode(2, "卢俊义", "玉麒麟"); HeroNode hero3 = new HeroNode(3, "吴用", "智多星"); HeroNode hero4 = new HeroNode(4, "林冲", "豹子头"); //创建要给链表 SingleLinkedList singleLinkedList = new SingleLinkedList(); //加入 singleLinkedList.add(hero1); singleLinkedList.add(hero4); singleLinkedList.add(hero2); singleLinkedList.add(hero3); // 测试一下单链表的反转功能 System.out.println("原来链表的情况~~"); singleLinkedList.list(); // System.out.println("反转单链表~~"); // reversetList(singleLinkedList.getHead()); // singleLinkedList.list(); System.out.println("测试逆序打印单链表, 没有改变链表的结构~~"); reversePrint(singleLinkedList.getHead()); /* //加入按照编号的顺序 singleLinkedList.addByOrder(hero1); singleLinkedList.addByOrder(hero4); singleLinkedList.addByOrder(hero2); singleLinkedList.addByOrder(hero3); //显示一把 singleLinkedList.list(); //测试修改节点的代码 HeroNode newHeroNode = new HeroNode(2, "小卢", "玉麒麟~~"); singleLinkedList.update(newHeroNode); System.out.println("修改后的链表情况~~"); singleLinkedList.list(); //删除一个节点 singleLinkedList.del(1); singleLinkedList.del(4); System.out.println("删除后的链表情况~~"); singleLinkedList.list(); //测试一下 求单链表中有效节点的个数 System.out.println("有效的节点个数=" + getLength(singleLinkedList.getHead()));//2 //测试一下看看是否得到了倒数第K个节点 HeroNode res = findLastIndexNode(singleLinkedList.getHead(), 3); System.out.println("res=" + res); */ } //方式2: //可以利用栈这个数据结构,将各个节点压入到栈中,然后利用栈的先进后出的特点,就实现了逆序打印的效果 public static void reversePrint(HeroNode head) { if(head.next == null) { return;//空链表,不能打印 } //创建要给一个栈,将各个节点压入栈 Stack<HeroNode> stack = new Stack<HeroNode>(); HeroNode cur = head.next; //将链表的所有节点压入栈 while(cur != null) { stack.push(cur); cur = cur.next; //cur后移,这样就可以压入下一个节点 } //将栈中的节点进行打印,pop 出栈 while (stack.size() > 0) { System.out.println(stack.pop()); //stack的特点是先进后出 } } //将单链表反转 public static void reversetList(HeroNode head) { //如果当前链表为空,或者只有一个节点,无需反转,直接返回 if(head.next == null || head.next.next == null) { return ; } //定义一个辅助的指针(变量),帮助我们遍历原来的链表 HeroNode cur = head.next; HeroNode next = null;// 指向当前节点[cur]的下一个节点 HeroNode reverseHead = new HeroNode(0, "", ""); //遍历原来的链表,每遍历一个节点,就将其取出,并放在新的链表reverseHead 的最前端 //动脑筋 while(cur != null) { next = cur.next;//先暂时保存当前节点的下一个节点,因为后面需要使用 cur.next = reverseHead.next;//将cur的下一个节点指向新的链表的最前端 reverseHead.next = cur; //将cur 连接到新的链表上 cur = next;//让cur后移 } //将head.next 指向 reverseHead.next , 实现单链表的反转 head.next = reverseHead.next; } //查找单链表中的倒数第k个结点 【新浪面试题】 //思路 //1. 编写一个方法,接收head节点,同时接收一个index //2. index 表示是倒数第index个节点 //3. 先把链表从头到尾遍历,得到链表的总的长度 getLength //4. 得到size 后,我们从链表的第一个开始遍历 (size-index)个,就可以得到 //5. 如果找到了,则返回该节点,否则返回nulll public static HeroNode findLastIndexNode(HeroNode head, int index) { //判断如果链表为空,返回null if(head.next == null) { return null;//没有找到 } //第一个遍历得到链表的长度(节点个数) int size = getLength(head); //第二次遍历 size-index 位置,就是我们倒数的第K个节点 //先做一个index的校验 if(index <=0 || index > size) { return null; } //定义给辅助变量, for 循环定位到倒数的index HeroNode cur = head.next; //3 // 3 - 1 = 2 for(int i =0; i< size - index; i++) { cur = cur.next; } return cur; } //方法:获取到单链表的节点的个数(如果是带头结点的链表,需求不统计头节点) /** * * @param head 链表的头节点 * @return 返回的就是有效节点的个数 */ public static int getLength(HeroNode head) { if(head.next == null) { //空链表 return 0; } int length = 0; //定义一个辅助的变量, 这里我们没有统计头节点 HeroNode cur = head.next; while(cur != null) { length++; cur = cur.next; //遍历 } return length; } } //定义SingleLinkedList 管理我们的英雄 class SingleLinkedList { //先初始化一个头节点, 头节点不要动, 不存放具体的数据 private HeroNode head = new HeroNode(0, "", ""); //返回头节点 public HeroNode getHead() { return head; } //添加节点到单向链表 //思路,当不考虑编号顺序时 //1. 找到当前链表的最后节点 //2. 将最后这个节点的next 指向 新的节点 public void add(HeroNode heroNode) { //因为head节点不能动,因此我们需要一个辅助遍历 temp HeroNode temp = head; //遍历链表,找到最后 while(true) { //找到链表的最后 if(temp.next == null) {// break; } //如果没有找到最后, 将将temp后移 temp = temp.next; } //当退出while循环时,temp就指向了链表的最后 //将最后这个节点的next 指向 新的节点 temp.next = heroNode; } //第二种方式在添加英雄时,根据排名将英雄插入到指定位置 //(如果有这个排名,则添加失败,并给出提示) public void addByOrder(HeroNode heroNode) { //因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置 //因为单链表,因为我们找的temp 是位于 添加位置的前一个节点,否则插入不了 HeroNode temp = head; boolean flag = false; // flag标志添加的编号是否存在,默认为false while(true) { if(temp.next == null) {//说明temp已经在链表的最后 break; // } if(temp.next.no > heroNode.no) { //位置找到,就在temp的后面插入 break; } else if (temp.next.no == heroNode.no) {//说明希望添加的heroNode的编号已然存在 flag = true; //说明编号存在 break; } temp = temp.next; //后移,遍历当前链表 } //判断flag 的值 if(flag) { //不能添加,说明编号存在 System.out.printf("准备插入的英雄的编号 %d 已经存在了, 不能加入\n", heroNode.no); } else { //插入到链表中, temp的后面 heroNode.next = temp.next; temp.next = heroNode; } } //修改节点的信息, 根据no编号来修改,即no编号不能改. //说明 //1. 根据 newHeroNode 的 no 来修改即可 public void update(HeroNode newHeroNode) { //判断是否空 if(head.next == null) { System.out.println("链表为空~"); return; } //找到需要修改的节点, 根据no编号 //定义一个辅助变量 HeroNode temp = head.next; boolean flag = false; //表示是否找到该节点 while(true) { if (temp == null) { break; //已经遍历完链表 } if(temp.no == newHeroNode.no) { //找到 flag = true; break; } temp = temp.next; } //根据flag 判断是否找到要修改的节点 if(flag) { temp.name = newHeroNode.name; temp.nickname = newHeroNode.nickname; } else { //没有找到 System.out.printf("没有找到 编号 %d 的节点,不能修改\n", newHeroNode.no); } } //删除节点 //思路 //1. head 不能动,因此我们需要一个temp辅助节点找到待删除节点的前一个节点 //2. 说明我们在比较时,是temp.next.no 和 需要删除的节点的no比较 public void del(int no) { HeroNode temp = head; boolean flag = false; // 标志是否找到待删除节点的 while(true) { if(temp.next == null) { //已经到链表的最后 break; } if(temp.next.no == no) { //找到的待删除节点的前一个节点temp flag = true; break; } temp = temp.next; //temp后移,遍历 } //判断flag if(flag) { //找到 //可以删除 temp.next = temp.next.next; }else { System.out.printf("要删除的 %d 节点不存在\n", no); } } //显示链表[遍历] public void list() { //判断链表是否为空 if(head.next == null) { System.out.println("链表为空"); return; } //因为头节点,不能动,因此我们需要一个辅助变量来遍历 HeroNode temp = head.next; while(true) { //判断是否到链表最后 if(temp == null) { break; } //输出节点的信息 System.out.println(temp); //将temp后移, 一定小心 temp = temp.next; } } } //定义HeroNode , 每个HeroNode 对象就是一个节点 class HeroNode { public int no; public String name; public String nickname; public HeroNode next; //指向下一个节点 //构造器 public HeroNode(int no, String name, String nickname) { this.no = no; this.name = name; this.nickname = nickname; } //为了显示方法,我们重新toString @Override public String toString() { return "HeroNode [no=" + no + ", name=" + name + ", nickname=" + nickname + "]"; } }
4.3 单链表面试题(新浪、百度、腾讯)
单链表的常见面试题有如下:
-  求单链表中有效节点的个数代码如下: //方法:获取到单链表的节点的个数(如果是带头结点的链表,需求不统计头节点) /** * * @param head 链表的头节点 * @return 返回的就是有效节点的个数 */ public static int getLength(HeroNode head) { if(head.next == null) { //空链表 return 0; } int length = 0; //定义一个辅助的变量, 这里我们没有统计头节点 HeroNode cur = head.next; while(cur != null) { length++; cur = cur.next; //遍历 } return length; }
-  查找单链表中的倒数第 k 个结点 【新浪面试题】代码演示: //查找单链表中的倒数第k个结点 【新浪面试题】 //思路 //1. 编写一个方法,接收head节点,同时接收一个index //2. index 表示是倒数第index个节点 //3. 先把链表从头到尾遍历,得到链表的总的长度 getLength //4. 得到size 后,我们从链表的第一个开始遍历 (size-index)个,就可以得到 //5. 如果找到了,则返回该节点,否则返回nulll public static HeroNode findLastIndexNode(HeroNode head, int index) { //判断如果链表为空,返回null if(head.next == null) { return null;//没有找到 } //第一个遍历得到链表的长度(节点个数) int size = getLength(head); //第二次遍历 size-index 位置,就是我们倒数的第K个节点 //先做一个index的校验 if(index <=0 || index > size) { return null; } //定义给辅助变量, for 循环定位到倒数的index HeroNode cur = head.next; //3 // 3 - 1 = 2 for(int i =0; i< size - index; i++) { cur = cur.next; } return cur; }
-  单链表的反转【腾讯面试题,有点难度】 
  思路分析图解
  
  
 代码实现
	//将单链表反转
	public static void reversetList(HeroNode head) {
		//如果当前链表为空,或者只有一个节点,无需反转,直接返回
		if(head.next == null || head.next.next == null) {
			return ;
		}
		
		//定义一个辅助的指针(变量),帮助我们遍历原来的链表
		HeroNode cur = head.next;
		HeroNode next = null;// 指向当前节点[cur]的下一个节点
		HeroNode reverseHead = new HeroNode(0, "", "");
		//遍历原来的链表,每遍历一个节点,就将其取出,并放在新的链表reverseHead 的最前端
		//动脑筋
		while(cur != null) { 
			next = cur.next;//先暂时保存当前节点的下一个节点,因为后面需要使用
			cur.next = reverseHead.next;//将cur的下一个节点指向新的链表的最前端
			reverseHead.next = cur; //将cur 连接到新的链表上
			cur = next;//让cur后移
		}
		//将head.next 指向 reverseHead.next , 实现单链表的反转
		head.next = reverseHead.next;
	}
- 从尾到头打印单链表 【百度,要求方式 1:反向遍历 。 方式 2:Stack 栈】
  思路分析图解
  
 代码实现
 写了一个小程序,测试 Stack 的使用
package com.atguigu.linkedlist;
import java.util.Stack;
//演示栈Stack的基本使用
public class TestStack {
	public static void main(String[] args) {
		Stack<String> stack = new Stack();
		// 入栈
		stack.add("jack");
		stack.add("tom");
		stack.add("smith");
		// 出栈
		// smith, tom , jack
		while (stack.size() > 0) {
			System.out.println(stack.pop());//pop就是将栈顶的数据取出
		}
	}
}
单链表的逆序打印代码:
//方式2:
	//可以利用栈这个数据结构,将各个节点压入到栈中,然后利用栈的先进后出的特点,就实现了逆序打印的效果
	public static void reversePrint(HeroNode head) {
		if(head.next == null) {
			return;//空链表,不能打印
		}
		//创建要给一个栈,将各个节点压入栈
		Stack<HeroNode> stack = new Stack<HeroNode>();
		HeroNode cur = head.next;
		//将链表的所有节点压入栈
		while(cur != null) {
			stack.push(cur);
			cur = cur.next; //cur后移,这样就可以压入下一个节点
		}
		//将栈中的节点进行打印,pop 出栈
		while (stack.size() > 0) {
			System.out.println(stack.pop()); //stack的特点是先进后出
		}
	}
- 合并两个有序的单链表,合并之后的链表依然有序【课后练习.】
4.4 双向链表应用实例
4.4.1 双向链表的操作分析和实现
使用带 head 头的双向链表实现 –水浒英雄排行榜
  管理单向链表的缺点分析:
- 单向链表,查找的方向只能是一个方向,而双向链表可以向前或者向后查找。
- 单向链表不能自我删除,需要靠辅助节点 ,而双向链表,则可以自我删除,所以前面我们单链表删除时节点,总是找到 temp,temp 是待删除节点的前一个节点(认真体会).
- 分析了双向链表如何完成遍历,添加,修改和删除的思路

对上图的说明:
分析 双向链表的遍历,添加,修改,删除的操作思路===》代码实现
-  遍历 方和 单链表一样,只是可以向前,也可以向后查找 
-  添加 (默认添加到双向链表的最后) 
 (1) 先找到双向链表的最后这个节点
 (2) temp.next = newHeroNode
 (3) newHeroNode.pre = temp;
-  修改 思路和 原来的单向链表一样. 
-  删除 
 (1) 因为是双向链表,因此,我们可以实现自我删除某个节点
 (2) 直接找到要删除的这个节点,比如 temp
 (3) temp.pre.next = temp.next
 (4) temp.next.pre = temp.pre;
  双向链表的代码实现package com.atguigu.linkedlist; public class DoubleLinkedListDemo { public static void main(String[] args) { // 测试 System.out.println("双向链表的测试"); // 先创建节点 HeroNode2 hero1 = new HeroNode2(1, "宋江", "及时雨"); HeroNode2 hero2 = new HeroNode2(2, "卢俊义", "玉麒麟"); HeroNode2 hero3 = new HeroNode2(3, "吴用", "智多星"); HeroNode2 hero4 = new HeroNode2(4, "林冲", "豹子头"); // 创建一个双向链表 DoubleLinkedList doubleLinkedList = new DoubleLinkedList(); doubleLinkedList.add(hero1); doubleLinkedList.add(hero2); doubleLinkedList.add(hero3); doubleLinkedList.add(hero4); doubleLinkedList.list(); // 修改 HeroNode2 newHeroNode = new HeroNode2(4, "公孙胜", "入云龙"); doubleLinkedList.update(newHeroNode); System.out.println("修改后的链表情况"); doubleLinkedList.list(); // 删除 doubleLinkedList.del(3); System.out.println("删除后的链表情况~~"); doubleLinkedList.list(); } } // 创建一个双向链表的类 class DoubleLinkedList { // 先初始化一个头节点, 头节点不要动, 不存放具体的数据 private HeroNode2 head = new HeroNode2(0, "", ""); // 返回头节点 public HeroNode2 getHead() { return head; } // 遍历双向链表的方法 // 显示链表[遍历] public void list() { // 判断链表是否为空 if (head.next == null) { System.out.println("链表为空"); return; } // 因为头节点,不能动,因此我们需要一个辅助变量来遍历 HeroNode2 temp = head.next; while (true) { // 判断是否到链表最后 if (temp == null) { break; } // 输出节点的信息 System.out.println(temp); // 将temp后移, 一定小心 temp = temp.next; } } // 添加一个节点到双向链表的最后. public void add(HeroNode2 heroNode) { // 因为head节点不能动,因此我们需要一个辅助遍历 temp HeroNode2 temp = head; // 遍历链表,找到最后 while (true) { // 找到链表的最后 if (temp.next == null) {// break; } // 如果没有找到最后, 将将temp后移 temp = temp.next; } // 当退出while循环时,temp就指向了链表的最后 // 形成一个双向链表 temp.next = heroNode; heroNode.pre = temp; } // 修改一个节点的内容, 可以看到双向链表的节点内容修改和单向链表一样 // 只是 节点类型改成 HeroNode2 public void update(HeroNode2 newHeroNode) { // 判断是否空 if (head.next == null) { System.out.println("链表为空~"); return; } // 找到需要修改的节点, 根据no编号 // 定义一个辅助变量 HeroNode2 temp = head.next; boolean flag = false; // 表示是否找到该节点 while (true) { if (temp == null) { break; // 已经遍历完链表 } if (temp.no == newHeroNode.no) { // 找到 flag = true; break; } temp = temp.next; } // 根据flag 判断是否找到要修改的节点 if (flag) { temp.name = newHeroNode.name; temp.nickname = newHeroNode.nickname; } else { // 没有找到 System.out.printf("没有找到 编号 %d 的节点,不能修改\n", newHeroNode.no); } } // 从双向链表中删除一个节点, // 说明 // 1 对于双向链表,我们可以直接找到要删除的这个节点 // 2 找到后,自我删除即可 public void del(int no) { // 判断当前链表是否为空 if (head.next == null) {// 空链表 System.out.println("链表为空,无法删除"); return; } HeroNode2 temp = head.next; // 辅助变量(指针) boolean flag = false; // 标志是否找到待删除节点的 while (true) { if (temp == null) { // 已经到链表的最后 break; } if (temp.no == no) { // 找到的待删除节点的前一个节点temp flag = true; break; } temp = temp.next; // temp后移,遍历 } // 判断flag if (flag) { // 找到 // 可以删除 // temp.next = temp.next.next;[单向链表] temp.pre.next = temp.next; // 这里我们的代码有问题? // 如果是最后一个节点,就不需要执行下面这句话,否则出现空指针 if (temp.next != null) { temp.next.pre = temp.pre; } } else { System.out.printf("要删除的 %d 节点不存在\n", no); } } } // 定义HeroNode2 , 每个HeroNode 对象就是一个节点 class HeroNode2 { public int no; public String name; public String nickname; public HeroNode2 next; // 指向下一个节点, 默认为null public HeroNode2 pre; // 指向前一个节点, 默认为null // 构造器 public HeroNode2(int no, String name, String nickname) { this.no = no; this.name = name; this.nickname = nickname; } // 为了显示方法,我们重新toString @Override public String toString() { return "HeroNode [no=" + no + ", name=" + name + ", nickname=" + nickname + "]"; } }
4.4.2 课堂作业和思路提示
双向链表的第二种添加方式,按照编号顺序 [示意图]按照单链表的顺序添加,稍作修改即可.
4.5 单向环形链表应用场景
Josephu(约瑟夫、约瑟夫环) 问题
 Josephu 问题为:设编号为 1,2,… n 的 n 个人围坐一圈,约定编号为 k(1<=k<=n)的人从 1 开始报数,数到 m 的那个人出列,它的下一位又从 1 开始报数,数到 m 的那个人又出列,依次类推,直到所有人出列为止,由此产生一个出队编号的序列。
提示:用一个不带头结点的循环链表来处理 Josephu 问题:先构成一个有 n 个结点的单循环链表,然后由 k 结点起从 1 开始计数,计到 m 时,对应结点从链表中删除,然后再从被删除结点的下一个结点又从 1 开始计数,直到最后一个结点从链表中删除算法结束。
 
4.6 单向环形链表介绍

4.7 Josephu 问题
 约瑟夫问题的示意图
 
 Josephu 问题
 Josephu 问题为:设编号为 1,2,… n 的 n 个人围坐一圈,约定编号为 k(1<=k<=n)的人从 1 开始报数,数到 m 的那个人出列,它的下一位又从 1 开始报数,数到 m 的那个人又出列,依次类推,直到所有人出列为止,由此产生一个出队编号的序列。
 提示
 用一个不带头结点的循环链表来处理 Josephu 问题:先构成一个有 n 个结点的单循环链表,然后由 k 结点起从 1 开始计数,计到 m 时,对应结点从链表中删除,然后再从被删除结点的下一个结点又从 1 开始计数,直到最后一个
结点从链表中删除算法结束。
 约瑟夫问题-创建环形链表的思路图解
 
 约瑟夫问题-小孩出圈的思路分析图
 
4.8 Josephu 问题的代码实现
package com.atguigu.linkedlist;
public class Josepfu {
	public static void main(String[] args) {
		// 测试一把看看构建环形链表,和遍历是否ok
		CircleSingleLinkedList circleSingleLinkedList = new CircleSingleLinkedList();
		circleSingleLinkedList.addBoy(125);// 加入5个小孩节点
		circleSingleLinkedList.showBoy();
		
		//测试一把小孩出圈是否正确
		circleSingleLinkedList.countBoy(10, 20, 125); // 2->4->1->5->3
		//String str = "7*2*2-5+1-5+3-3";
	}
}
// 创建一个环形的单向链表
class CircleSingleLinkedList {
	// 创建一个first节点,当前没有编号
	private Boy first = null;
	// 添加小孩节点,构建成一个环形的链表
	public void addBoy(int nums) {
		// nums 做一个数据校验
		if (nums < 1) {
			System.out.println("nums的值不正确");
			return;
		}
		Boy curBoy = null; // 辅助指针,帮助构建环形链表
		// 使用for来创建我们的环形链表
		for (int i = 1; i <= nums; i++) {
			// 根据编号,创建小孩节点
			Boy boy = new Boy(i);
			// 如果是第一个小孩
			if (i == 1) {
				first = boy;
				first.setNext(first); // 构成环
				curBoy = first; // 让curBoy指向第一个小孩
			} else {
				curBoy.setNext(boy);//
				boy.setNext(first);//
				curBoy = boy;
			}
		}
	}
	// 遍历当前的环形链表
	public void showBoy() {
		// 判断链表是否为空
		if (first == null) {
			System.out.println("没有任何小孩~~");
			return;
		}
		// 因为first不能动,因此我们仍然使用一个辅助指针完成遍历
		Boy curBoy = first;
		while (true) {
			System.out.printf("小孩的编号 %d \n", curBoy.getNo());
			if (curBoy.getNext() == first) {// 说明已经遍历完毕
				break;
			}
			curBoy = curBoy.getNext(); // curBoy后移
		}
	}
	// 根据用户的输入,计算出小孩出圈的顺序
	/**
	 * 
	 * @param startNo
	 *            表示从第几个小孩开始数数
	 * @param countNum
	 *            表示数几下
	 * @param nums
	 *            表示最初有多少小孩在圈中
	 */
	public void countBoy(int startNo, int countNum, int nums) {
		// 先对数据进行校验
		if (first == null || startNo < 1 || startNo > nums) {
			System.out.println("参数输入有误, 请重新输入");
			return;
		}
		// 创建要给辅助指针,帮助完成小孩出圈
		Boy helper = first;
		// 需求创建一个辅助指针(变量) helper , 事先应该指向环形链表的最后这个节点
		while (true) {
			if (helper.getNext() == first) { // 说明helper指向最后小孩节点
				break;
			}
			helper = helper.getNext();
		}
		//小孩报数前,先让 first 和  helper 移动 k - 1次
		for(int j = 0; j < startNo - 1; j++) {
			first = first.getNext();
			helper = helper.getNext();
		}
		//当小孩报数时,让first 和 helper 指针同时 的移动  m  - 1 次, 然后出圈
		//这里是一个循环操作,知道圈中只有一个节点
		while(true) {
			if(helper == first) { //说明圈中只有一个节点
				break;
			}
			//让 first 和 helper 指针同时 的移动 countNum - 1
			for(int j = 0; j < countNum - 1; j++) {
				first = first.getNext();
				helper = helper.getNext();
			}
			//这时first指向的节点,就是要出圈的小孩节点
			System.out.printf("小孩%d出圈\n", first.getNo());
			//这时将first指向的小孩节点出圈
			first = first.getNext();
			helper.setNext(first); //
			
		}
		System.out.printf("最后留在圈中的小孩编号%d \n", first.getNo());
		
	}
}
// 创建一个Boy类,表示一个节点
class Boy {
	private int no;// 编号
	private Boy next; // 指向下一个节点,默认null
	public Boy(int no) {
		this.no = no;
	}
	public int getNo() {
		return no;
	}
	public void setNo(int no) {
		this.no = no;
	}
	public Boy getNext() {
		return next;
	}
	public void setNext(Boy next) {
		this.next = next;
	}
}


















![P1563 [NOIP2016 提高组] 玩具谜题————C++](https://img-blog.csdnimg.cn/direct/d9231294900f45058f7bc60d6ed4d116.png)