强化学习应用(二):基于Q-learning的物流配送路径规划研究(提供Python代码)

news2025/7/19 3:52:01

一、Q-learning算法简介

Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个值函数来指导智能体在环境中做出决策,以最大化累积奖励。

Q-learning算法的核心思想是使用一个Q值函数来估计每个状态动作对的价值。Q值表示在特定状态下采取某个动作所能获得的预期累积奖励。算法通过不断更新Q值函数来优化智能体的决策策略。

Q-learning算法的更新规则如下:

Q(s, a) = Q(s, a) + α * (r + γ * max(Q(s', a')) - Q(s, a))

其中,Q(s, a)表示在状态s下采取动作a的Q值,α是学习率,r是当前状态下采取动作a所获得的即时奖励,γ是折扣因子,s'是下一个状态,a'是在下一个状态下的最优动作。

Q-learning算法的步骤如下:

1. 初始化Q值函数为0或随机值。

2. 在每个时间步骤t,根据当前状态s选择一个动作a。

3. 执行动作a,观察环境返回的奖励r和下一个状态s'。4. 根据Q值函数更新规则更新Q值:Q(s, a) = Q(s, a) + α * (r + γ * max(Q(s', a')) - Q(s, a))。

5. 将下一个状态s'设置为当前状态s。

6. 重复步骤2-5直到达到终止条件。

Q-learning算法的优点是可以在没有环境模型的情况下进行学习,并且可以处理连续状态和动作空间。它在许多领域中都有广泛的应用,如机器人控制、游戏策略和自动驾驶等。

二、物流配送路径规划问题介绍

物流配送路径规划问题是指在物流配送过程中,如何合理地安排运输路径,以最小化成本、提高配送效率和满足各种约束条件的问题。该问题在物流领域具有重要的应用价值。

在物流配送路径规划问题中,需要考虑以下因素:

1. 配送需求:包括货物的数量、种类、重量等信息。

2. 配送点:包括供应商、仓库、客户等各个配送点的位置信息。

3. 车辆:包括车辆的数量、容量、速度等信息。

4. 路网:包括道路网络的拓扑结构、距离、通行时间等信息。

5. 约束条件:包括时间窗口约束、车辆容量约束、车辆行驶时间约束等。

为了解决物流配送路径规划问题,研究者们提出了多种优化算法,如遗传算法、粒子群算法、模拟退火算法等。这些算法通过对配送路径进行搜索和优化,以找到最优的配送方案。

在本文中物流配送路径规划问题仅仅考虑路径最短,可以简单抽象为旅行商问题(Traveling salesman problem, TSP)。TSP是一个经典的组合优化问题,它可以描述为一个商品推销员去若干城市推销商品,要求遍历所有城市后回到出发地,目的是选择一个最短的路线。当城市数目较少时,可以使用穷举法求解。而随着城市数增多,求解空间比较复杂,无法使用穷举法求解,因此需要使用优化算法来解决TSP问题。一般地,TSP问题可描述为:一个旅行商需要拜访n个城市,城市之间的距离是已知的,若旅行商对每个城市必须拜访且只拜访一次,求旅行商从某个城市出发并最终回到起点的一条最短路径。

三、Q-learning求解物流配送路径规划

3.1部分Python代码

可以自动生成地图也可导入自定义地图,只需要修改如下代码中chos的值即可。

import matplotlib.pyplot as plt
from Qlearning import Qlearning
#Chos: 1 随机初始化地图; 0 导入固定地图
chos=1
node_num=46#当选择随机初始化地图时,自动随机生成node_num-1个城市
# 创建对象,初始化节点坐标,计算每两点距离
qlearn = Qlearning(alpha=0.5, gamma=0.01, epsilon=0.5, final_epsilon=0.05,chos=chos,node_num=node_num)
# 训练Q表、打印路线
iter_num=8000#训练次数
Curve,BestRoute,Qtable,Map=qlearn.Train_Qtable(iter_num=iter_num)
#Curve 训练曲线
#BestRoute 最优路径
#Qtable Qlearning求解得到的在最优路径下的Q表
#Map TSP的城市节点坐标


## 画图
plt.figure()
plt.ylabel("distance")
plt.xlabel("iter")
plt.plot(Curve, color='green')
plt.title("Q-Learning")
plt.savefig('curve.png')
plt.show()


3.2部分结果

(1)随机生成15个城市

Q-learning得到的最短路线: [1, 11, 15, 10, 2, 5, 3, 8, 7, 14, 9, 4, 13, 12, 6, 1]

(2)随机生成20个城市

Q-learning得到的最短路线: [1, 3, 15, 16, 7, 9, 2, 4, 19, 6, 14, 18, 10, 20, 11, 12, 13, 17, 8, 5, 1]

(3)随机生成25个城市

Q-learning得到的最短路线: [1, 2, 24, 16, 23, 15, 14, 19, 4, 12, 18, 6, 5, 10, 20, 3, 21, 11, 17, 7, 22, 9, 13, 25, 8, 1]

四、完整Python代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1382123.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Docker实战10|实现volum数据卷

上一篇文章中,仔细讲解了Docker是如何改变当前的root文件系统以及mount等操作。 本文继续讲解Docker是如何实现Volum数据卷的。 实现Volume数据卷 获取代码 git clone https://gitee.com/mjreams/docker.git 上一小节介绍了如何使用AUFS包装busybox&#xff0c…

【Python】使用tkinter设计开发Windows桌面程序记事本(5)

上一篇:【Python】使用tkinter设计开发Windows桌面程序记事本(4)-CSDN博客 下一篇:待羽翼丰满之时,必将是文章更新之日! 作者发炎 本篇文章继承了前面四篇文章,并且实现了新建、保存、另存、打…

Open3D 计算点云质心和中心(18)

Open3D 计算点云质心和中心(18) 一、算法介绍二、算法实现1.代码2.结果一、算法介绍 质心和中心是有所区别的,点云质心可以看作每个点的坐标均值,点云中心可以看作点云所在包围盒的中心,这也是上一章坐标最值的常用方法,下面就两种方法进行实现(图例,大概就是这个意思…

JVM工作原理与实战(十五):运行时数据区-程序计数器

专栏导航 JVM工作原理与实战 RabbitMQ入门指南 从零开始了解大数据 目录 专栏导航 前言 一、运行时数据区 二、程序计数器 总结 前言 JVM作为Java程序的运行环境,其负责解释和执行字节码,管理内存,确保安全,支持多线程和提供…

电子学会C/C++编程等级考试2023年09月(四级)真题解析

C/C++编程(1~8级)全部真题・点这里 第1题:酒鬼 Santo刚刚与房东打赌赢得了一间在New Clondike 的大客厅。今天,他来到这个大客厅欣赏他的奖品。房东摆出了一行瓶子在酒吧上。瓶子里都装有不同体积的酒。令Santo高兴的是,瓶子中的酒都有不同的味道。房东说道:“你可以喝尽…

用ChatGPT写论文的重要指令

使用ChatGPT写论文,chatgpt3.5的普通版本与ChatGPTPLUS版本我都尝试过,这里我还是比较喜欢ChatGPTPLUS来写论文 快速订阅ChatGPTPLUS方法,0年费、0月费 具体步骤可参考 亲测,Chatgpt4.0充值(虚拟卡充值)-…

网络安全B模块(笔记详解)- 网络渗透测试

LAND网络渗透测试 1.进入虚拟机操作系统:BT5中的/root目录,完善该目录下的land.py文件,填写该文件当中空缺的Flag1字符串,将该字符串作为Flag值(形式:Flag1字符串)提交;(land.py脚本功能见该任务第6题) 输入flag sendp(packet) Flag:sendp(packet) 2.进入虚拟机操作…

QSpace:Mac上的简洁高效多窗格文件管理器

在Mac用户中,寻找一款能够提升文件管理效率的工具是常见的需求。QSpace,一款专为Mac设计的文件管理器,以其简洁的界面、高效的多窗格布局和丰富的功能,为用户提供了一个全新的文件管理体验。 QSpace:灵活与功能丰富的结…

CMake+QT+大漠插件的桌面应用开发

文章目录 CMakeQT大漠插件的桌面应用开发说明环境项目结构配置编译环境代码 CMakeQT大漠插件的桌面应用开发 说明 在CMake大漠插件的应用开发——处理dm.dll,免注册调用大漠插件中已经说明了如何免注册调用大漠插件,以及做了几个简单的功能调用&#x…

响应式Web开发项目教程(HTML5+CSS3+Bootstrap)第2版 第1章 HTML5+CSS3初体验 项目1-1 三栏布局页面

项目展示 三栏布局是一种常用的网页布局结构。 除了头部区域、底部区域外,中间的区域(主体区域)划分成了三个栏目,分别是左侧边栏、内容区域和右侧边栏,这三个栏目就构成了三栏布局。当浏览器的宽度发声变化时&#x…

最全对象存储(云盘)挂载本地主机或服务器

1.对象存储介绍 1.1 分类 分布式存储的应用场景相对于其存储接口,现在流行分为三种: 块存储: 这种接口通常以QEMU Driver或者Kernel Module的方式存在,这种接口需要实现Linux的Block Device的接口或者QEMU提供的Block Driver接口,块存储一般…

androidkiller的两种异常情况

第一种反编译时异常: Exception in thread “main” org.jf.dexlib2.dexbacked.DexBackedDexFile$NotADexFile: Not a valid dex magic value: cf 77 4c c7 9b 21 01 修改方法: 编辑 AndroidKiller 的 bin/apktool 目录下有一个 apktool.bat 文件 修改成…

nmealib 库移植 - -编译报错不完全类型 error: field ‘st_atim’ has incomplete type

一、报错提示-不完全类型(has incomplete type) Compiling obj/main.o from main.c.. arm-linux-gcc -g -w -stdgnu99 -DLINUX -I./ -Inmealib/inc/ -c -o obj/main.o main.c In file included from /home/user/Desktop/nuc980-sdk/sdk/arm_linux_4.8/usr/include/sys/stat…

豆包ai介绍

豆包是字节跳动基于云雀模型开发的AI工具,具有强大的语言处理能力和广泛的应用场景,无论是在学习、工作、生活中,都能派上用场。 豆包可以帮助打工人和创作者提升效率,完成各种工作任务,又能扮演各类AI角色进行高情商…

2003-2021年地级市知识产权保护水平数据

2003-2021年地级市知识产权保护水平数据 1、时间:2003-2021年 2、指标:city、year、地方知识产权审判结案数、地方GDP、国内知识产权审判结案数、国内GDP、知识产权保护水平 3、来源:北大法宝、城市年鉴、统计年鉴、历年知识产权保护状况白…

SpringMVC(六)RESTful

1.RESTful简介 REST:Representational State Transfer,表现层资源状态转移 (1)资源 资源是一种看待服务器的方式,即,将服务器看作是由很多离散的资源组成。每个资源是服务器上一个可命名的抽象概念。因为资源是一个抽象的概念,所以它不仅仅能代表服务器文件系统中的一个文件…

场效应管在电路中如何控制电流大小

场效应管的概念 场效应晶体管(FieldEffectTransistor缩写(FET))简称场效应管。主要有两种类型(juncTIonFET—JFET)和金属-氧化物半导体场效应管(metal-oxidesemiconductorFET,简称M…

Linux完全卸载Anaconda3和MiniConda3

如何安装Anaconda3和MiniConda3请看这篇文章: 安装Anaconda3和MiniConda3_minianaconda3-CSDN博客文章浏览阅读474次。MiniConda3官方版是一款优秀的Python环境管理软件。MiniConda3最新版只包含conda及其依赖项如果您更愿意拥有conda以及超过720个开源软件包&…

关联规则分析(Apriori算法2

目录 1.核心术语:2.强关联规则:小结: 1.核心术语: 支持度(Support):指项集出现的频繁程度(相当于项集出现的概率) 最小支持度有绝对值和占比两种表示方式 置信度&#…

一个月带你手撕LLM理论与实践,并获得面试or学术指导!

大家好,我是zenRRan,是本号的小号主。 从该公众号的名字就能看出,运营已经好多年了,这些年当中直接或间接帮助很多同学从NLP入门到进阶,理论到实践,学校到企业,本科到硕士甚至博士。 每天习惯性…