3D目标检测(教程+代码)

news2025/5/21 21:01:53

随着计算机视觉技术的不断发展,3D目标检测成为了一个备受关注的研究领域。与传统的2D目标检测相比,3D目标检测可以在三维空间中对物体进行定位和识别,具有更高的准确性和适用性。本文将介绍3D目标检测的相关概念、方法和代码实现。

一、3D目标检测的基本概念
1. 3D目标检测是什么?

3D目标检测是指在三维场景中检测和识别物体的过程。与传统的2D目标检测相比,3D目标检测可以提供更加精确的物体位置和姿态信息,适用于许多实际应用,例如自动驾驶、机器人导航、增强现实等领域。

2. 3D目标检测的难点是什么?

3D目标检测的难点主要包括以下几个方面:

(1)数据获取困难:获取三维场景数据需要使用专门的传感器或摄像机,成本较高,数据集数量有限。

(2)数据处理复杂:三维场景数据需要进行点云处理、网格化等操作,对算法和计算资源要求较高。

(3)数据标注困难:标注三维物体需要进行立体标注,标注成本较高,标注人员需要专业知识和技能。

二、3D目标检测的常见方法
1. 基于深度学习的3D目标检测

深度学习是当前3D目标检测领域的主流方法。通常采用点云或三维网格作为输入数据,在经过卷积、池化等操作后,使用全连接层输出物体的类别、位置和姿态信息。常见的深度学习模型包括PointNet、VoxelNet、Frustum PointNet等。

2. 基于几何学的3D目标检测

基于几何学的3D目标检测方法通常基于传统的计算几何或机器视觉算法,例如支持向量机、随机森林等。这些方法通常使用手工设计的特征和规则来实现目标检测和识别功能。虽然这些方法在一些领域和场景下仍然具有优势,但在复杂场景下的推广和应用受到了限制。

三、3D目标检测的代码实现

下面将介绍一个基于深度学习的3D目标检测代码实现案例,使用的是PointNet++算法。

1. 环境搭建

本案例使用Python语言和PyTorch深度学习框架,需要安装numpy、h5py、scipy、tqdm等库。同时,需要安装CUDA和cuDNN等支持GPU加速的工具。

2. 数据预处理

本案例使用KITTI数据集进行实验,需要对原始数据进行预处理,包括点云转换、数据划分、标注等操作。具体操作可参考官方文档或相关教程。

3. 模型训练

本案例使用PointNet++算法进行模型训练,代码实现可参考GitHub上的开源代码。在训练过程中需要设置网络结构、损失函数、优化器等参数,并使用训练集和验证集进行训练和测试。训练过程需要耗费较长时间,需要充分利用GPU加速和分布式训练等技术。

4. 模型评估

在模型训练完成后,需要对其进行评估和测试。本案例使用验证集和测试集进行评估,计算准确率、召回率、F1值等指标,并可使用混淆矩阵和ROC曲线进行可视化分析。

四、总结

本文介绍了3D目标检测的基本概念、常见方法和代码实现。随着计算机视觉技术的不断发展,3D目标检测在自动驾驶、机器人导航、增强现实等领域具有广泛的应用前景。未来的研究将致力于进一步提高算法的性能和效率,以满足实际应用的需求。

概述

3d Objectron是一种适用于日常物品的移动实时3D物体检测解决方案。它可以检测2D图像中的物体,并通过在Objectron数据集上训练的机器学习(ML)模型估计它们的姿态.
下图为模型训练后推理的结果!

算法

我们建立了两个机器学习管道来从单个RGB图像预测物体的3D边界框:一个是两阶段管道,另一个是单阶段管道。两阶段管道比单阶段管道快3倍,准确率相似或更好。单阶段管道擅长检测多个物体,而两阶段管道适用于单个主导物体。
单价段训练模型:

我们的单级流技术路线图,如图所示,模型骨干具有基于MobileNetv2的编码器-解码器架构。我们采用多任务学习方法,同时预测物体的形状、检测和回归。形状任务根据可用的真实注释,例如分割,预测物体的形状信号。如果在训练数据中没有形状注释,则此步骤是可选的。对于检测任务,我们使用注释的边界框并适合高斯到盒子,其中心在盒子重心处,标准偏差与盒子大小成比例。检测的目标是预测具有峰值表示物体中心位置的此分布。回归任务估计八个边界框顶点的二维投影。为了获得边界框的最终3D坐标,我们利用了一个成熟的姿态估计算法(EPnP)。它可以恢复物体的3D边界框,而不需要先验知识。给定3D边界框,我们可以轻松地计算物体的姿态和大小。该模型足够轻,可以在移动设备上实时运行(在Adreno 650移动GPU上以26 FPS的速度运行)。

主要代码和结果
结果:
 

获取现实世界的3D训练数据
尽管由于自动驾驶汽车依赖于3D捕捉传感器(如LIDAR)的研究的流行,有大量的街景3D数据可用,但是对于更精细的日常物品的具有真实3D标注的数据集非常有限。为了解决这个问题,我们开发了一种新颖的数据管道,利用移动增强现实(AR)会话数据。随着ARCore和ARKit的到来,数亿部智能手机现在具有AR功能,并且能够在AR会话期间捕获附加信息,包括相机姿态、稀疏3D点云、估计的照明和平面表面。
为了标注地面真实数据,我们构建了一个新颖的注释工具,可用于AR会话数据,允许注释者快速为物体标注3D边界框。此工具使用分屏视图,在左侧显示覆盖了3D边界框的2D视频帧,以及在右侧显示3D点云、相机位置和检测到的平面的视图。注释者在3D视图中绘制3D边界框,并通过检查2D视频帧的投影来验证其位置。对于静态对象,我们只需要在一个帧中标注一个对象,并使用AR会话数据的地面真实相机姿态信息将其传播到所有帧,这使得该过程高效。

主要代码:
 

with mp_objectron.Objectron(static_image_mode=True,
                            max_num_objects=5,
                            min_detection_confidence=0.5,
                            model_name='Shoe') as objectron:
  for idx, file in enumerate(IMAGE_FILES):
    image = cv2.imread(file)
##全部代码请联系---------->qq1309399183<-----------------------
    # Convert the BGR image to RGB and process it with MediaPipe Objectron.
    results = objectron.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    


if not results.detected_objects:
      print(f'No box landmarks detected on {file}')
      continue
    print(f'Box landmarks of {file}:')
    annotated_image = image.copy()
    for detected_object in results.detected_objects:
      mp_drawing.draw_landmarks(
          annotated_image, detected_object.landmarks_2d, mp_objectron.BOX_CONNECTIONS)
      mp_drawing.draw_axis(annotated_image, detected_object.rotation,
                           detected_object.translation)
      cv2.imwrite('/tmp/annotated_image' + str(idx) + '.png', annotated_image)

QQ767172261

全部代码可交流私信

主要讲解:主要调用库函数,然后可以对视频流或者读取电脑摄像头,真正做到方便实用,高效快捷,实时显示结果 实施输出模型,可以毕业设计用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1356379.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

二、串行FLASH文件系统FatFs移植

经过上一节的分析&#xff0c;我们对文件系统有一定的理解了&#xff0c;这一节给大家介绍怎么把FatFs文件系统的这些代码移植到STM32S上&#xff0c;然后STM32利用这一些代码或者函数&#xff0c;以文件的格式对FLASH进行读写数据。 实则对diskio.c提供一些函数接口。 首先将…

ebay头像如何设置?eBay店铺的头像怎么改?-站斧浏览器

ebay头像如何设置&#xff1f; eBay店铺的头像可以通过以下方式进行设置&#xff1a; 登录eBay账户&#xff1a;店主需要使用自己的eBay账号登录到eBay网站。 进入店铺管理后台&#xff1a;在登录后&#xff0c;店主可以点击页面右上角的用户名或店铺名称&#xff0c;从下拉…

初学者SkyWalking详细使用文档

SkyWalking使用文档 下载地址&#xff1a;https://skywalking.apache.org/downloads/ 主要下载&#xff1a;skywalking apm&#xff08;tar&#xff09; 、agents(tar) 解压&#xff1a; &#xff08;可选操作&#xff09;&#xff1a; ​ apache-skywalking-apm-bin --&g…

Flink实时电商数仓之旁路缓存

撤回流的处理 撤回流是指流式处理过程中&#xff0c;两表join过程中的数据是一条一条跑过来的&#xff0c;即原本可以join到一起的数据在刚开始可能并没有join上。 撤回流的格式&#xff1a; 解决方案 定时器&#xff1a;使用定时器定时10s&#xff08;数据最大的时间差值&am…

02-微服务-Eureka注册中心

Eureka注册中心 假如我们的服务提供者user-service部署了多个实例&#xff0c;如图&#xff1a; 大家思考几个问题&#xff1a; order-service在发起远程调用的时候&#xff0c;该如何得知user-service实例的ip地址和端口&#xff1f;有多个user-service实例地址&#xff0c;…

Idea如何配置git

打开Ideal&#xff0c;点击Settings&#xff0c;找到Version Control这一栏&#xff0c;然后点开&#xff0c;找到Git 如果我们电脑是已经有git&#xff0c;那我们就点击那个有点像文件夹的标致&#xff0c;然后找到我们安装在电脑上面的自己安装的git的exe结尾的文件&#xff…

【论文阅读笔记】Stable View Synthesis 和 Enhanced Stable View Synthesis

目录 Stable View Synthesis摘要引言 Enhanced Stable View Synthesis 从Mip-NeRF360的对比实验中找到的两篇文献&#xff0c;使用了卷积神经网络进行渲染和新视角合成&#xff0c;特此记录一下 ToDo Stable View Synthesis paper&#xff1a;https://readpaper.com/pdf-ann…

JS中 focus 和 blur 焦点事件

发现的一个小知识点 focus 获取焦点事件 代码如下&#xff1a; <body><input type"text" placeholder"input输入框"><script>let input document.querySelector(input)input.addEventListener(focus, function (e) {e.target.style.…

(读书笔记)网络是如何连接的

1.1 生成 HTTP 请求消息 浏览器是一个具备多种客户端功能的综合性客户端软件,因此它需要 一些东西来判断应该使用其中哪种功能来访问相应的数据,而各种不同的 URL(Uniform Resource Locator,统一资源定位符。) 就是用来干这个的,比如访问 Web 服务器时用“http:”,而访…

三段式电流保护与自动重合闸MATLAB仿真模型

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 前加速、后加速的区别&#xff1a; 前加速是保护装置不判别是永久性故障还是瞬时故障&#xff0c;直接跳闸&#xff0c;然后经重合闸装置来纠正&#xff1b;后加速是保护装置是先判别故障类型有选择性跳闸 …

【Linux Shell】4. 数组

文章目录 【 1. 数组的定义 】【 2. 读取数组 】【 3. 关联数组 】【 4. 获取数组中的所有元素 】【 5. 获取数组的长度 】 数组中可以存放多个值。 Bash Shell 只支持一维数组&#xff08;不支持多维数组&#xff09;&#xff0c;初始化时不需要定义数组大小。与大部分编程语言…

【动态规划】LeetCode-10. 正则表达式匹配

10. 正则表达式匹配。 给你一个字符串 s 和一个字符规律 p&#xff0c;请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。 ‘.’ 匹配任意单个字符‘*’ 匹配零个或多个前面的那一个元素 所谓匹配&#xff0c;是要涵盖 整个 字符串 s的&#xff0c;而不是部分字符串。 …

Microsoft Word去除页面多余的换行符

大家写论文的时候或者排版的时候可能遇到换行符多出来了导致页面的不美观。像下面这张图一样&#xff0c;虽然latex不会出现这种问题。 处理方式 点击插入然后点击分页 结果展示

设计模式 七大原则

1.单一职责原则 单一职责原则&#xff08;SRP&#xff1a;Single responsibility principle&#xff09;又称单一功能原则 核心&#xff1a;解耦和增强内聚性&#xff08;高内聚&#xff0c;低耦合&#xff09;。 描述&#xff1a; 类被修改的几率很大&#xff0c;因此应该专注…

(Java企业 / 公司项目)Nacos的怎么搭建多环境配置?(含相关面试题)(二)

上一篇讲了一个单体服务中配置&#xff0c;传统的Nacos配置但是在微服务架构当中肯定都是多环境下配置&#xff0c;比如生产环境&#xff0c;dev测试环境等等。 第一种方式模拟开始&#xff1a; 首先展示在生产环境中nacos如何配置&#xff0c;在模块下新建一个配置文件&…

javascript 常见工具函数(一)

1.将JSON数据根据相同值&#xff0c;进行归类划分&#xff1a; var arr [{ time: "1", img: "22222" }, { time: "2", img: "555" }, { time: "1", img: "888888" }, { time: "2", img: "4444&q…

D50|单调栈

739.每日温度 初始思路&#xff1a; 暴力解法但是会超时。 class Solution {public int[] dailyTemperatures(int[] temperatures) {int[] answer new int[temperatures.length];for(int i 0;i<temperatures.length;i){for(int j i;j<temperatures.length;j){if(te…

NeRF-RPN: A general framework for object detection in NeRFs 全文翻译

摘要 Abstract 本文提出了第一个重要的物体检测框架 NeRF-RPN&#xff0c;它直接在 NeRF 上运行。给定一个预先训练好的 NeRF 模型&#xff0c;NeRF-RPN 的目标是检测场景中所有物体的边界框。通过利用包含多尺度三维神经体积特征的新颖体素表示法&#xff0c;我们证明…

双击shutdown.bat关闭Tomcat报错:未设置关闭端口~

你们好&#xff0c;我是金金金。 场景 当我startup.bat启动tomcat之后&#xff0c;然后双击shutdown.bat关闭&#xff0c;结果报错了~ 排查 看报错信息很明显了&#xff0c;未配置关闭端口&#xff0c;突然想起来了我在安装的时候都选的是默认的配置&#xff0c;我还记得有这…

深度学习课程实验二深层神经网络搭建及优化

一、 实验目的 1、学会训练和搭建深层神经网络&#xff1b; 2、掌握超参数调试正则化及优化。 二、 实验步骤 初始化 1、导入所需要的库 2、搭建神经网络模型 3、零初始化 4、随机初始化 5、He初始化 6、总结三种不同类型的初始化 正则化 1、导入所需要的库 2、使用非正则化…