大创项目推荐 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

news2025/5/25 6:02:51

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 Yolov5算法
  • 4 数据处理和训练
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **深度学习卫星遥感图像检测与识别 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

近年来,世界各国大力发展航空航天事业,卫星图像的目标检测在各行各业的应用得到了快速的发展,特别是军事侦查、海洋船舶和渔业管理等领域。由于卫星图像中有价值的信息极少,卫星图像数据规模巨大,这迫切需要智能辅助工具帮助相关从业人员从卫星图像中高效获取精确直观的信息。
本文利用深度学习技术,基于Yolov5算法框架实现卫星图像目标检测问题。

2 实现效果

实现效果如下:可以看出对船只、飞机等识别效果还是很好的。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 Yolov5算法

简介
下图所示为 YOLOv5 的网络结构图,分为输入端,Backbone,Neck 和 Prediction 四个部分。其中,
输入端包括 Mosaic 数据增强、自适应图片缩放、自适应锚框计算,Backbone 包括 Focus 结构、CSP
结 构,Neck 包 括 FPN+PAN 结 构,Prediction 包 括GIOU_Loss 结构。
在这里插入图片描述
相关代码

class Yolo(object):
    def __init__(self, weights_file, verbose=True):
        self.verbose = verbose
        # detection params
        self.S = 7  # cell size
        self.B = 2  # boxes_per_cell
        self.classes = ["aeroplane", "bicycle", "bird", "boat", "bottle",
                        "bus", "car", "cat", "chair", "cow", "diningtable",
                        "dog", "horse", "motorbike", "person", "pottedplant",
                        "sheep", "sofa", "train","tvmonitor"]
        self.C = len(self.classes) # number of classes
        # offset for box center (top left point of each cell)
        self.x_offset = np.transpose(np.reshape(np.array([np.arange(self.S)]*self.S*self.B),
                                              [self.B, self.S, self.S]), [1, 2, 0])
        self.y_offset = np.transpose(self.x_offset, [1, 0, 2])

        self.threshold = 0.2  # confidence scores threhold
        self.iou_threshold = 0.4
        #  the maximum number of boxes to be selected by non max suppression
        self.max_output_size = 10

        self.sess = tf.Session()
        self._build_net()
        self._build_detector()
        self._load_weights(weights_file)

4 数据处理和训练

数据集
本项目使用 DOTA 数据集,原数据集中待检测的目标如下
在这里插入图片描述
原数据集中的标签如下
在这里插入图片描述
图像分割和尺寸调整
YOLO 模型的图像输入尺寸是固定的,由于原数据集中的图像尺寸不一,我们将原数据集中的图像按目标分布的位置分割成一个个包含目标的子图,并将每个子图尺寸调整为
1024×1024。分割前后的图像如所示。
分割前
在这里插入图片描述
分割后
在这里插入图片描述
模型训练
在 yolov5/ 目录,运行 train.py 文件开始训练:

python train.py --weight weights/yolov5s.pt --batch 16 --epochs 100 --cache

其中的参数说明:

  • weight:使用的预训练权重,这里示范使用的是 yolov5s 模型的预训练权重
  • batch:mini-batch 的大小,这里使用 16
  • epochs:训练的迭代次数,这里我们训练 100 个 epoch
  • cache:使用数据缓存,加速训练进程

相关代码

#部分代码
def train(hyp, opt, device, tb_writer=None):
    logger.info(f'Hyperparameters {hyp}')
    log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve'  # logging directory
    wdir = log_dir / 'weights'  # weights directory
    os.makedirs(wdir, exist_ok=True)
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = str(log_dir / 'results.txt')
    epochs, batch_size, total_batch_size, weights, rank = \
        opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Save run settings
    with open(log_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(log_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if 'anchors' in hyp and hyp['anchors']:
            ckpt['model'].yaml['anchors'] = round(hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg else []  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = ['', ]  # parameter names to freeze (full or partial)
    if any(freeze):
        for k, v in model.named_parameters():
            if any(x in k for x in freeze):
                print('freezing %s' % k)
                v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        v.requires_grad = True
        if '.bias' in k:
            pg2.append(v)  # biases
        elif '.weight' in k and '.bn' not in k:
            pg1.append(v)  # apply weight decay
        else:
            pg0.append(v)  # all else

训练开始时的日志信息
在这里插入图片描述
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1355858.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何在win7同样支持Webview2 在 WPF 中使用本地 Webview2 ,如何不依赖系统 Runtime

项目运行环境: .Net Framework 4.5.2 Windows 7 x64 Service Pack 1 WebView2 Microsoft.WebView2.FixedVersionRuntime.120.0.2210.91.x64 考虑到很多老项目,本项目使用的是.Net Framework 4.5.2,.Net 更高版本的其实也是可以支持的。 …

win2003搭建DNS服务器域名解析方法

可以搭建DNS服务器的系统有很多,这里以win2003举例。 要在Windows 2003上搭建DNS服务器,需要按照以下步骤操作: 一 配置DNS服务器 1、打开“控制面板”,选择“添加/删除程序”,点击“添加/删除Windows组件”。 2、在“Windows组件向导”中…

亚马逊促销效果不好怎么办?亚马逊促销规则是什么?-站斧浏览器

亚马逊促销效果不好怎么办? 分析原因:首先需要深入分析促销效果不佳的原因。可能是促销活动的设计不够吸引人,或者是目标受众定位不准确。 调整策略:根据分析结果调整促销策略。例如,优化广告文案、更改推广时段或调…

什么是负载均衡?什么情况下又会用到负载均衡

什么是负载均衡 在大型的网络应用中,使用多台服务器提供同一个服务是常有的事。平均分配每台服务器上的压力、将压力分散的方法就叫做负载均衡。 [利用 DNS来实现服务器流量的负载均衡,原理是“给网站访问者随机分配不同ip”] 什么情况下会用到负载均…

苹果Vision Pro将于1月27日上市!

在无数期待中,苹果全新产品Vision Pro头显终于定下上市日期。 彭博社记者马克古曼(Mark Gurman)于近日在X(前推特)平台爆料了这一信息,预计苹果Vision Pro头显将于2024年1月27日率先在美国上市。 在过去看…

实战SRC | api接口未授权 + 越权漏洞

本文由掌控安全学院 - zxl2605 投稿 一次在fofa上通过学习的fofa语句进行查询,无意中查询到了一个网址 其登录界面如下: 使用浏览器的F12打开开发者工具,查看JS寻找接口: 从JS代码中查询到一处接口如下: 发现是以p…

解决SyntaxError: future feature annotations is not defined,可适用其他包

方法:对报错的包进行降级 pip install tikzplotlib0.9.8site-packages后面是使用pip install安装的包,根据这个找到报错的包 想法来源: 环境是python3.6,完全按照作者要求进行环境配置,但仍报错。 我在网上找的解决…

视频号小店全新赛道,新手如何入驻?

我是电商珠珠 视频号小店为视频号团队所研发。距今为止也才发展了一年时间,在23年下半年掀起了不小的浪花。 我做视频号小店也有一年时间了,在他刚开始三个月的时候,就开始带着团队一起做。到现在也拥有了自己的视频号小店运营团队&#xf…

ArkTS语言应用开发入门指南与简单案例解析

文章目录 前言创建项目及其介绍简单案例学习本文总结问答回顾-学习前言 在前几节课中,我们已经了解了ArkTS语言的特点以及其基本语法。现在,我们将正式利用ArkTS来进行应用开发。本节课将通过一个快速入门案例,让大家熟悉开发工具的用法,并介绍UI的基础概念。 创建项目及…

yolo增加Shape-IoU,完美超越SIoU/EIoU/CIoU

论文地址:https://arxiv.org/pdf/2312.17663.pdf 代码地址:GitHub - malagoutou/Shape-IoU 摘要 作为检测定位分支的重要组成部分,边界框回归损失在目标检测任务中起着重要作用。现有的边界框回归方法通常考虑GT框和预测框之间的几何关系&…

数组指针和指针数组

首先,理解一下数组指针和指针数组这两个名词: “数组指针”和“指针数组”,只要在名词中间加上“的”字,就知道中心了—— 数组的指针:是一个指针,什么样的指针呢?指向数组的指针。 指针的数…

Windows内核理论基础学习

文章目录 前言Windosw内核 理论基础Windows体系结构CPU权限级别内存空间布局Windows内核结构硬件抽象层(HAL)内核层执行体层设备驱动程序文件系统/存储管理网络 Windows子系统窗口管理图形设备接口 系统线程和系统进程 内核基本概念处理器模式内存管理进…

Vue3+TS+ElementPlus的安装和使用教程【详细讲解】

前言 本文简单的介绍一下vue3框架的搭建和有关vue3技术栈的使用。通过本文学习我们可以自己独立搭建一个简单项目和vue3的实战。 随着前端的日月更新,技术的不断迭代提高,如今新vue项目首选用vue3 typescript vite pinia……模式。以前我们通常使用…

git 管理vivado工程, tcl 恢复vivado工程

使用Git进行Vivado版本控制 english youtube 如果不是上边目录结果 , 参考上边目录结构 ,重新建一个工程; 在目录work下产生proj.tcl 修改proj.tcl 主要删除bd wrapper相关的部分; # Import local files from the original project set files [list \[file normalize…

【嵌入式】About USB Powering

https://www.embedded.com/usb-type-c-and-power-delivery-101-power-delivery-protocol/https://www.embedded.com/usb-type-c-and-power-delivery-101-power-delivery-protocol/ Type-C接口有多强?PD协议又是什么?-电子发烧友网由于Type-C接口自身的强…

详细分析MybatisPlus中的orderBy、orderByDesc、orderByAsc函数

目录 前言1. 概念2. API示例3. 实战 前言 实战中学习并进行补充该类的源码以及应用 1. 概念 在 MyBatis-Plus 中,orderBy、orderByDesc 和 orderByAsc 是用于构建 SQL 查询语句中的 ORDER BY 子句的方法。 这些方法都是通过 QueryWrapper 类的实例来调用的&…

提升代码托管,助力大数据学习!Git学习网站等你来挑战!

介绍:Git是一个开源的分布式版本控制系统,可以高效地处理各种规模项目的版本管理。它是Linus Torvalds为了帮助管理Linux内核开发而开发的开放源码版本控制软件。在Git中,你可以掌握工作区、暂存区和版本库等核心概念,并学会使用常…

SV-7042VP 15W sip网络有源音箱,可外接15W无源副音箱

SV-7042VP 15W sip网络有源音箱,可外接15W无源副音箱 一、描述 SV-7042VP是深圳锐科达电子有限公司的一款壁挂式SIP网络有源音箱,具有10/100M以太网接口,可将网络音源通过自带的功放和喇叭输出播放,可达到功率15W。同时它可以外接一个15W的…

VSCode上远程调试代码出现的问题

记录一下: 真的是汗流浃背了,师妹叫帮忙如何在VSCode上远程调试代码,一些自己已经经历过的问题,现在已经忘记了。又在网上一顿搜索,这次记录下吧。。。 出现以下问题: 1. 终端界面总是sh-4.4 $ &#xff…

【自动化测试】转行人员在面试中被问及计算机基础知识该怎么办?????(长文,预计三小时阅读)

看前提示,本文共4W字,76道题(附答案) 全部看完预计三个小时,如果觉得时间长,可以直接跳转到文末,有本文的word版提供下载 近些年软件测试岗位从转行的来人越来越多,占比高达44% 软件…