柱面,盘片,盘面,扇面,磁头,磁道,扇区,CHS地址,LAB地址

news2025/5/28 18:54:22

柱面,盘片,盘面,扇面,磁头,磁道,扇区,CHS地址,LAB地址1

CHS地址

CHS地址指的是柱面(Cylinder)、磁头(Head)、扇区(Sector)三个参数组成的地址,是用来表示磁盘上每个扇区位置的一种方式。

物理扇区号 = ((柱面号×磁头数) + 磁头号) × 每磁道扇区数 + 扇区偏移量 - 1

其中:

柱面号从0开始编号;
磁头号从0开始编号;
扇区号从1开始编号;
扇区偏移量指的是在某个磁头的某个柱面上的扇区位置偏移量,从1开始编号。
例如,假设某个磁盘有16384个柱面,16个磁头,每个磁头有63个扇区,每个扇区大小为512字节,要计算某个扇区的物理位置,其CHS地址为(1234, 5, 6),则计算过程如下:

物理扇区号 = ((1234 × 16) + 5) × 63 + 6 - 1 = 1257983

物理位置 = 1257983 × 512 = 644022016

LAB地址

LBA地址(Logical Block Addressing)是一种直接以扇区为单位来寻址的方式。

硬盘上的数据定位

每个扇区可存储128×2的N次方(N=0.1.2.3)字节的数据(一般为512B),扇区为数据存储的最小单元,从上图可知,外圈的扇区面积比内圈大,为何存储的数据量相同,这是因为内外圈使用的磁物质密度不同,但现在的硬盘已经采用内外圈同密度物质来存储数据了,以减少类似“大面积小数据”的浪费情况。(此时的内外磁道的扇区数量将不同,具体细节省略)

有了扇区(sector),有了柱面(cylinder),有了磁头(head),显然可以定位数据了,这就是数据定位(寻址)方式之一,CHS(也称3D),对早期的磁盘(上图所示)非常有效,知道用哪个磁头,读取哪个柱面上的第几扇区就OK了。CHS模式支持的硬盘容量有限,用8bit来存储磁头地址,用10bit来存储柱面地址,用6bit来存储扇区地址,而一个扇区共有512Byte,这样使用CHS寻址一块硬盘最大容量为256 * 1024 * 63 * 512B = 8064 MB(1MB = 1048576B)(若按1MB=1000000B来算就是8.4GB)

但现在很多硬盘采用同密度盘片,意味着内外磁道上的扇区数量不同,扇区数量增加,容量增加,3D很难定位寻址,新的寻址模式:LBA(Logical Block Addressing)。在LBA地址中,地址不再表示实际硬盘的实际物理地址(柱面、磁头和扇区)。LBA编址方式将CHS这种三维寻址方式转变为一维的线性寻址,它把硬盘所有的物理扇区的C/H/S编号通过一定的规则转变为一线性的编号,系统效率得到大大提高,避免了烦琐的磁头/柱面/扇区的寻址方式。在访问硬盘时,由硬盘控制器再将这种逻辑地址转换为实际硬盘的物理地址。

LBA下的编号,扇区编号是从0开始。

逻辑扇区号LBA的公式:

LBA(逻辑扇区号)=磁头数 × 每磁道扇区数 × 当前所在柱面号 + 每磁道扇区数 × 当前所在磁头号 + 当前所在扇区号 – 1

例如:CHS=0/0/1,则根据公式LBA=255 × 63 × 0 + 63 × 0 + 1 – 1= 0

也就是说物理0柱面0磁头1扇区,是逻辑0扇区。

柱面(cylinder),盘片(platter), 盘面(Side), 扇面,磁头(head), 磁道(track), 扇区(sector)

  1. 柱面
    在这里插入图片描述

所有盘面上的同一磁道构成一个圆柱,通常称做柱面(Cylinder),每个圆柱上的磁头由上而下从“0”开始编号。数据的读/写按柱面进行,即磁 头读/写数据时首先在同一柱面内从“0”磁头开始进行操作,依次向下在同一柱面的不同盘面即磁头上进行操作,只在同一柱面所有的磁头全部读/写完毕后磁头 才转移到下一柱面,因为选取磁头只需通过电子切换即可,而选取柱面则必须通过机械切换。电子切换相当快,比在机械上磁头向邻近磁道移动快得多,所以,数据 的读/写按柱面进行,而不按盘面进行。也就是说,一个磁道写满数据后,就在同一柱面的下一个盘面来写,一个柱面写满后,才移到下一个扇区开始写数据。读数据也按照这种方式进行,这样就提高了硬盘的读/写效率。
一块硬盘驱动器的圆柱数(或每个盘面的磁道数)既取决于每条磁道的宽窄(同样,也与磁头的大小有关),也取决于定位机构所决定的磁道间步距的大小。

  1. 盘面

一个盘片都有两个盘面(Side),即上、下盘面,一般每个盘面都会利 用,都可以存储数据,成为有效盘片,也有极个别的硬盘盘面数为单数。每一个这样的有效盘面都有一个盘面号,按顺序从上至下从“0”开始依次编号。在硬盘系 统中,盘面号又叫磁头号,因为每一个有效盘面都有一个对应的读写磁头。硬盘的盘片组在2~14片不等,通常有2~3个盘片,故盘面号(磁头号)为0~3或 0~5。

  1. 磁道
    在这里插入图片描述

磁盘在格式化时被划分成许多同心圆,这些同心圆轨迹叫做磁道(Track)。磁道从外向内从0开始顺序编号。硬盘的每一个盘面有300~1 024个磁道,新式大容量硬盘每面的磁道数更多。信息以脉冲串的形式记录在这些轨迹中,这些同心圆不是连续记录数据,而是被划分成一段段的圆弧,这些圆弧 的角速度一样。由于径向长度不一样,所以,线速度也不一样,外圈的线速度较内圈的线速度大,即同样的转速下,外圈在同样时间段里,划过的圆弧长度要比内圈 划过的圆弧长度大。每段圆弧叫做一个扇区,扇区从“1”开始编号,每个扇区中的数据作为一个单元同时读出或写入。一个标准的3.5寸硬盘盘面通常有几百到 几千条磁道。磁道是“看”不见的,只是盘面上以特殊形式磁化了的一些磁化区,在磁盘格式化时就已规划完毕。

4.扇区
在这里插入图片描述

操作系统以扇区(Sector)形式将信息存储在硬盘上,每个扇区包括512个字节的数据和一些其他信息。一个扇区有两个主要部分:存储数据地点的标识符和存储数据的数据段。

扇区的第一个主要部分是标识符。标识符,就是扇区头标,包括组成扇区三维地址的三个数字:扇区所在的磁头(或盘面)、磁道(或柱面号)以及扇区在磁 道上的位置即扇区号。头标中还包括一个字段,其中有显示扇区是否能可靠存储数据,或者是否已发现某个故障因而不宜使用的标记。有些硬盘控制器在扇区头标中 还记录有指示字,可在原扇区出错时指引磁盘转到替换扇区或磁道。最后,扇区头标以循环冗余校验(CRC)值作为结束,以供控制器检验扇区头标的读出情况, 确保准确无误。
扇区的第二个主要部分是存储数据的数据段,可分为数据和保护数据的纠错码(ECC)。在初始准备期间,计算机用512个虚拟信息字节(实际数据的存放地)和与这些虚拟信息字节相应的ECC数字填入这个部分。

5、硬盘的读写原理
在这里插入图片描述

系统将文件存储到磁盘上时,按柱面、磁头、扇区的方式进行,即最先是第1磁道的第一磁头下(也就是第1盘面的第一磁道)的所有扇区,然后,是同一柱面的下一磁头,……,一个柱面存储满后就推进到下一个柱面,直到把文件内容全部写入磁盘。
系统也以相同的顺序读出数据。读出数据时通过告诉磁盘控制器要读出扇区所在的柱面号、磁头号和扇区号(物理地址的三个组成部分)进行。磁盘控制器则 直接使磁头部件步进到相应的柱面,选通相应的磁头,等待要求的扇区移动到磁头下。在扇区到来时,磁盘控制器读出每个扇区的头标,把这些头标中的地址信息与 期待检出的磁头和柱面号做比较(即寻道),然后,寻找要求的扇区号。待磁盘控制器找到该扇区头标时,根据其任务是写扇区还是读扇区,来决定是转换写电路, 还是读出数据和尾部记录。找到扇区后,磁盘控制器必须在继续寻找下一个扇区之前对该扇区的信息进行后处理。如果是读数据,控制器计算此数据的ECC码,然 后,把ECC码与已记录的ECC码相比较。如果是写数据,控制器计算出此数据的ECC码,与数据一起存储。在控制器对此扇区中的数据进行必要处理期间,磁盘继续旋转。
磁盘的读写顺序都是从盘片的最外面开始向内读写,也就是从1柱面1磁道1扇区开始(0柱面0磁道1扇区为磁盘主引导扇区),然后寻道找到对应的扇区,再根据读写情况,切换电路对磁盘进行或读或写操作。但如果扇区编号(保存在扇区头标)是按1,2,3的数字顺序排列下去,那就可能出现一个读写效率的问题。比如扇区编号是按上面的情况排列在磁道上,那么当磁头对扇区1读写完成后,如果由于盘片的旋转速度过快或磁盘数据读写速度过慢,以致磁头准备对扇区2进行读写时,磁头却转到扇区2中间,磁道上的扇区间隔已不足以为磁盘提供读写下一扇区的准备时间,那么磁盘就需旋转一周后回头再对扇区2进行读写。这样的话,磁盘读写一道磁道时,磁盘旋转的周数就等于该磁道上的扇区数,这将大大降低磁盘的读写速率。因此,IBM的一位工程师就创出一种“交叉因子编码”的方式来对扇区进行编号。比如交叉因子为2:1,也就是1与2之间相差两扇区(比如第一位为扇区1,那么扇区2就在第三位),2与3也是如此,以此类推。如果磁盘旋转通过扇区1、2之间的间隔的时间小于磁盘的准备时间,那么读完一磁道的数据就需要磁盘旋转两周,否则就需旋转一磁道的扇区数。若是“准备时间”仍不足的话可以用交叉因子为3:1。因此通过交叉因子编码可以大大地提高磁盘读写速率,并充分利用磁盘空间,防止资源浪费。

6、硬盘上的引导信息
硬盘的第一个扇区被称之为Boot Sector。由MBR (MasterBoot Record)、DPT (Disk Partition Table) 和 Boot Record ID 三部分组成。

MBR又称作主引导记录,占用 Boot Sector 的前 446 个字节(0 ~ 0x1BD)。存放系统主引导程序,负责从活动分区中装载并运行系统引导程序。

DPT 即主分区表,占用 64 个字节 (0x1BE ~ 0x1FD),记录了磁盘的基本分区信息。主分区表分为四个分区项,每项 16 字节,分别记录了每个主分区的信息 (因此最多可以有 4 个主分区)。

Boot Record ID 即引导区标记,占用两个字节 (0x1FE ~ 0x1FF)。对于合法引导区,它等于 0xAA55,这是判别引导区是否合法的标志。


  1. https://www.cnblogs.com/bandaobudaoweng/p/9230912.html
    https://www.jianshu.com/p/345a45469a79 ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1355573.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

新年话节能 电梯也减排

小伍恭祝大家2024年元旦快乐!! 目前,电梯的节能已经得到业界的广泛重视,积极推动相关的节能技术的实施,努力宣传和倡导规范的电梯的使用行为,将极大地改变我国电梯的耗能状况,为节能减排做出较大…

Linux进程管理和计划任务

前言 上篇关于进程管理命令使用说明尚未完结,本篇将继续介绍相关命令以及计划任务管理。 目录 前言 一、控制进程 1. vmstat 2. free 3. iostat 4. iotop/iftop 5. uptime 6. mpstat 7. dstat 8. webadin 9. 服务器五大性能 二、进程管理 1. 手动…

SemCms外贸网站商城系统 SQL注入漏洞复现(CVE-2023-50563)

0x01 产品简介 SemCms是国内团队打造的专门针对外贸网站的开源CMS,主要用于外贸企业,兼容IE,Firefox等主流浏览器。建设商城性质的外贸网站,多语言(小语种)网站。 0x02 漏洞概述 SemCms外贸网站商城系统SEMCMS_Function.php 中的 AID 参数存在SQL注入漏洞,未经身份认…

Zuul相关面试题及到案(2024)

1、什么是Zuul?它在微服务架构中有什么作用? Zuul是Netflix开源的一种提供API网关服务的应用程序,它在微服务架构中扮演着流量的前门角色。主要功能包括以下几点: 路由转发:Zuul网关将外部请求转发到具体的微服务实例…

【QT】中英文切换

很高兴在雪易的CSDN遇见你 前言 本文分享QT中如何进行中英文切换,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞关注,小易会继续努力分享,一起进步! 你的点赞就是我的动力(^U&#xff3e…

EtherCAT FP介绍系列文章—热插拔

EtherCAT主站能够顺利初始化和操作网络,离不开EtherCAT网络信息文件(ENI),它包含与EtherCAT主站本机以及连接到主站上每个从站设备的配置一般性信息。该文件由配置工具创建,并由EtherCAT主站程序加载,如下图…

由于无法找到mfc100u.dll怎么解决,mfc100u.dll丢失的6个解决方法分享

本文将为您详细介绍mfc100u.dll文件以及丢失时的六个不同解决方法,帮助您更好地了解和解决这一问题。 一、mfc100u.dll是什么文件? mfc100u.dll是Microsoft Foundation Classes(微软基础类库)中的一个动态链接库文件。它是Visua…

AI的突破与融合:2024年中国智能技术的新纪元_光点科技

随着人工智能领域的不断突破,2024年注定将成为中国智能技术发展的一个新纪元。当下,AI技术不仅在理论研究上取得了重大进展,其在商业应用、社会服务等领域的融合也日益深入。本文将结合近期网络上的AI热点,展望中国在AI技术方面的…

印象笔记03 衍生软件使用

印象笔记03 衍生软件使用 Verse 以下内容来源于官方介绍 VERSE是一款面向未来的智能化生产力工具,由印象笔记团队诚意推出。 你可以用VERSE: 管理数字内容,让信息有序高效运转;搭建知识体系,构建你的强大知识库&am…

SwiftUI 打造一款“可收缩”的 HStack(一)

概览 拥有雄心壮志(亦或是自我感觉良好)的秃头码农们都喜欢接受编程上各种颇有难度的挑战,比如刷刷力扣(LeetCode)或 codeforces 上难题啥的。 为了满足小伙伴们的“冒险精神”(亦或是“自虐癖”),加上这篇博文我们会用连续 4 篇系列文章通过不同的方式来解决同一道与…

倍思科技红海突围要义:紧随新趋势,“实用而美”理念从一而终

移动数码周边市场始终不缺热度。 销售端是业绩的节节高升,如在2023年京东双十一,移动数码周边产品销售成果丰硕,根据京东战报,大功率充电器成交额同比提升 200%,65W以上移动电源成交额同比提升 150%,自带线…

[实用小知识]:Google浏览器添加代理SwitchyOmega

Google浏览器添加代理SwitchyOmega 1. 下载插件到本地 SwitchyOmega_2.5.21.crx OmegaOptions_20230615.bak 2. 开始配置Google代理 1、打开Google浏览器,点开右上角三个点,在更多工具里选择扩展程序 2、在扩展程序里打开开发者模式 3、将Google文件…

世微AP5125 外置MOS管5-100V 8A平均电流型LED降压恒流驱动器 SOT23-6

产品描述 AP5125 是一款外围电路简单的 Buck 型平均电流检测模式的 LED 恒流驱动器,适用于 8-100V 电压范围的非隔离式大功率恒流 LED 驱动领域。芯片采用固定频率 140kHz 的 PWM 工作模式, 利用平均电流检测模式,因此具有优异的负载调整 率特…

windows x86 calling convention

stdcall 全部压入栈里面 第一个参数最后一个入栈(在栈顶) fastcall ecx edx前两个 后面的压栈,顺序和stdcall一样

【代数学作业1-python实现GNFS一般数域筛】构造特定的整系数不可约多项式:涉及素数、模运算和优化问题

代数学作业1-完整版:python实现GNFS一般数域筛 写在最前面背景在GNFS算法中选择互质多项式时,需要考虑哪些关键因素,它们对算法的整体运行时间有何影响? 练习1题目题目分析Kleinjung方法简介通用数域筛法(GNFS)中的多…

Linux——搭建KVM环境

KVM虚拟化 一、安装所需软件 1、yum安装软件 [rootlocalhost ~]# yum -y install qemu-kvm qemu-kvm-tools virt-install qemu-img bridge-utils libvirt virt-manager 重新启动 [rootlocalhost ~]reboot 2、查看CPU是否支持虚拟化 [rootlocalhost ~]# cat /proc/cpuinf…

清风数学建模笔记-时间序列分析

内容:时间预测分析 一.时间序列 1.时点时间序列 2.时期时间序列:可相加 二.时间趋势分解 1.季节趋势 拓展:百度指数: 2.循环变动趋势(和季节很像但是是以年为单位) 3.不规则变动趋势(像扰…

探索 Vue 实例方法的魅力:提升 Vue 开发技能(上)

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

机器学习:贝叶斯估计在新闻分类任务中的应用(实验报告)

文章摘要 随着互联网的普及和发展,大量的新闻信息涌入我们的生活。然而,这些新闻信息的质量参差不齐,有些甚至包含虚假或误导性的内容。因此,对新闻进行有效的分类和筛选,以便用户能够快速获取真实、有价值的信息&…

几个有趣的go服务框架

开篇先吐槽几句~ 我个人有一些习惯, 比如在服务设计时会考虑的比较长远,会考虑到到未来的扩展等等…然后程序设计的抽象成度就会比较高,各个模块之间解耦,但这样往往就会带来程序的复杂度提升。 这其实在一些公司里面…