本文仅供学习使用
本文参考:
B站:DR_CAN
Dr. CAN学习笔记-自动控制原理Ch1-8Lag Compensator滞后补偿器
从稳态误差入手(steady state Error)
 
 误差 Error : 
     
      
       
       
         E 
        
        
        
          ( 
         
        
          s 
         
        
          ) 
         
        
       
         = 
        
       
         R 
        
        
        
          ( 
         
        
          s 
         
        
          ) 
         
        
       
         − 
        
       
         X 
        
        
        
          ( 
         
        
          s 
         
        
          ) 
         
        
       
         = 
        
       
         R 
        
        
        
          ( 
         
        
          s 
         
        
          ) 
         
        
       
         − 
        
       
         E 
        
        
        
          ( 
         
        
          s 
         
        
          ) 
         
        
       
         ⋅ 
        
       
         K 
        
       
         G 
        
        
        
          ( 
         
        
          s 
         
        
          ) 
         
        
       
         ⇒ 
        
       
         E 
        
        
        
          ( 
         
        
          s 
         
        
          ) 
         
        
        
        
          ( 
         
        
          1 
         
        
          + 
         
        
          K 
         
        
          G 
         
         
         
           ( 
          
         
           s 
          
         
           ) 
          
         
        
          ) 
         
        
       
         = 
        
       
         R 
        
        
        
          ( 
         
        
          s 
         
        
          ) 
         
        
       
         ⇒ 
        
       
         E 
        
        
        
          ( 
         
        
          s 
         
        
          ) 
         
        
       
         = 
        
        
        
          1 
         
         
         
           1 
          
         
           + 
          
         
           K 
          
         
           G 
          
          
          
            ( 
           
          
            s 
           
          
            ) 
           
          
         
        
       
         R 
        
        
        
          ( 
         
        
          s 
         
        
          ) 
         
        
       
         = 
        
       
         R 
        
        
        
          ( 
         
        
          s 
         
        
          ) 
         
        
        
        
          1 
         
         
         
           1 
          
         
           + 
          
         
           K 
          
          
           
           
             N 
            
            
            
              ( 
             
            
              s 
             
            
              ) 
             
            
           
           
           
             D 
            
            
            
              ( 
             
            
              s 
             
            
              ) 
             
            
           
          
         
        
       
         = 
        
        
        
          1 
         
        
          s 
         
        
        
        
          1 
         
         
         
           1 
          
         
           + 
          
         
           K 
          
          
           
           
             N 
            
            
            
              ( 
             
            
              s 
             
            
              ) 
             
            
           
           
           
             D 
            
            
            
              ( 
             
            
              s 
             
            
              ) 
             
            
           
          
         
        
       
      
        E\left( s \right) =R\left( s \right) -X\left( s \right) =R\left( s \right) -E\left( s \right) \cdot KG\left( s \right) \Rightarrow E\left( s \right) \left( 1+KG\left( s \right) \right) =R\left( s \right) \Rightarrow E\left( s \right) =\frac{1}{1+KG\left( s \right)}R\left( s \right) =R\left( s \right) \frac{1}{1+K\frac{N\left( s \right)}{D\left( s \right)}}=\frac{1}{s}\frac{1}{1+K\frac{N\left( s \right)}{D\left( s \right)}} 
       
      
    E(s)=R(s)−X(s)=R(s)−E(s)⋅KG(s)⇒E(s)(1+KG(s))=R(s)⇒E(s)=1+KG(s)1R(s)=R(s)1+KD(s)N(s)1=s11+KD(s)N(s)1
单位阶跃unit step : 
     
      
       
       
         R 
        
        
        
          ( 
         
        
          s 
         
        
          ) 
         
        
       
         = 
        
        
        
          1 
         
        
          s 
         
        
       
      
        R\left( s \right) =\frac{1}{s} 
       
      
    R(s)=s1
 稳态误差Steady State Error——FVT终值定理
  
      
       
        
        
          e 
         
        
          s 
         
        
          s 
         
        
          = 
         
         
          
           
           
             lim 
            
           
              
            
           
           
           
             t 
            
           
             → 
            
           
             ∞ 
            
           
          
         
        
          e 
         
         
         
           ( 
          
         
           t 
          
         
           ) 
          
         
        
          = 
         
         
          
           
           
             lim 
            
           
              
            
           
           
           
             s 
            
           
             → 
            
           
             o 
            
           
          
         
        
          s 
         
        
          E 
         
         
         
           ( 
          
         
           s 
          
         
           ) 
          
         
        
          = 
         
         
          
           
           
             lim 
            
           
              
            
           
           
           
             s 
            
           
             → 
            
           
             o 
            
           
          
         
        
          s 
         
        
          ⋅ 
         
         
         
           1 
          
         
           s 
          
         
         
         
           1 
          
          
          
            1 
           
          
            + 
           
          
            K 
           
           
            
            
              N 
             
             
             
               ( 
              
             
               s 
              
             
               ) 
              
             
            
            
            
              D 
             
             
             
               ( 
              
             
               s 
              
             
               ) 
              
             
            
           
          
         
        
          = 
         
         
         
           1 
          
          
          
            1 
           
          
            + 
           
          
            K 
           
           
            
            
              N 
             
             
             
               ( 
              
             
               0 
              
             
               ) 
              
             
            
            
            
              D 
             
             
             
               ( 
              
             
               0 
              
             
               ) 
              
             
            
           
          
         
        
          = 
         
         
          
          
            D 
           
           
           
             ( 
            
           
             0 
            
           
             ) 
            
           
          
          
          
            D 
           
           
           
             ( 
            
           
             0 
            
           
             ) 
            
           
          
            + 
           
          
            K 
           
          
            N 
           
           
           
             ( 
            
           
             0 
            
           
             ) 
            
           
          
         
        
       
         ess=\underset{t\rightarrow \infty}{\lim}e\left( t \right) =\underset{s\rightarrow o}{\lim}sE\left( s \right) =\underset{s\rightarrow o}{\lim}s\cdot \frac{1}{s}\frac{1}{1+K\frac{N\left( s \right)}{D\left( s \right)}}=\frac{1}{1+K\frac{N\left( 0 \right)}{D\left( 0 \right)}}=\frac{D\left( 0 \right)}{D\left( 0 \right) +KN\left( 0 \right)} 
        
       
     ess=t→∞lime(t)=s→olimsE(s)=s→olims⋅s11+KD(s)N(s)1=1+KD(0)N(0)1=D(0)+KN(0)D(0)

 



















