[足式机器人]Part4 南科大高等机器人控制课 CH12 Robotic Motion Control

news2025/5/10 3:00:41

本文仅供学习使用
本文参考:
B站:CLEAR_LAB
笔者带更新-运动学
课程主讲教师:
Prof. Wei Zhang
课程链接 :
https://www.wzhanglab.site/teaching/mee-5114-advanced-control-for-robotics/

南科大高等机器人控制课 Ch12 Robotic Motion Control

  • 1. Basic Linear Control Design
    • 1.1 Error Response
    • 1.2 Standard Second-Order Systems
    • 1.3 Second-Order Response Characteristics
    • 1.4 State-Space Controller Design
  • 2. Motion Control Problems
    • 2.1 Robotic Motion Control Problem
    • 2.2 Variations in Robot Motion Control
  • 3. Motion Control with Velocity/Acceleration as Input
    • 3.1 Velocity-Resolved Control
      • 3.2.1 Velocity-Resolved Joint Space Control
      • 3.2.2 Velocity-Resolved Task Space Control
    • 3.2 Acceleration-Resolved Control
      • 3.2.1 Acceleration-Resolved Control in Joint Space
      • 3.2.2 Acceleration-Resolved Control in Task Space
  • 4. Motion Control with Torque as Input and Task Space Inverse Dynamics
    • 4.1 Recall Properties of Robot Dynamics
    • 4.2 Computed Torque Control
    • 4.3 Inverse Dynamics Control


机器人——运动能力、计算能力、感知决策能力 的机电系统

1. Basic Linear Control Design

1.1 Error Response

在这里插入图片描述
Steady-state error : e s s = lim ⁡ t → ∞ θ e ( t ) e_{\mathrm{ss}}=\underset{t\rightarrow \infty}{\lim}\theta _{\mathrm{e}}\left( t \right) ess=tlimθe(t)

Precent overshoot : P.O.

Rise time / Peak time :

Settling time : T s T_{\mathrm{s}} Ts

1.2 Standard Second-Order Systems

详细推导见 : (待补充)
在这里插入图片描述

1.3 Second-Order Response Characteristics

详细推导见 : (待补充)
在这里插入图片描述

1.4 State-Space Controller Design

在这里插入图片描述

  • Eigenvalue assignment : Find control gain K K K such that e i g ( A − B K ) = e i g d e s i r e d eig\left( A-BK \right) =eig_{\mathrm{desired}} eig(ABK)=eigdesired
  • Solvability : We can always find such K K K if ( A , B ) \left( A,B \right) (A,B) is controllable ( r a n k ( m c ) = n rank\left( m_{\mathrm{c}} \right) =n rank(mc)=n)
  • How to choose desired eigs? —— refer to 2nd-order system
    specification (P.O. T s T_{\mathrm{s}} Ts T p T_{\mathrm{p}} Tp) ⇒ a r t \overset{art}{\Rightarrow} art dominant poles + other poles ⇒ \Rightarrow e i g d e s i r e d eig_{\mathrm{desired}} eigdesired ⇒ s c i e n c e \overset{science}{\Rightarrow} science K K K

2. Motion Control Problems

2.1 Robotic Motion Control Problem

Dynamic equation of fully-acuated robot (with external force) : { τ = M ( q ) q ¨ + c ( q , q ˙ ) q ˙ + g ( q ) + J T ( q ) F e x t y = h ( q ) \begin{cases} \tau =M\left( q \right) \ddot{q}+c\left( q,\dot{q} \right) \dot{q}+g\left( q \right) +J^{\mathrm{T}}\left( q \right) \mathcal{F} _{\mathrm{ext}}\\ y=h\left( q \right)\\ \end{cases} {τ=M(q)q¨+c(q,q˙)q˙+g(q)+JT(q)Fexty=h(q)
q ∈ R n q\in \mathbb{R} ^n qRn : joint positions (generalized coordinate)
τ ∈ R n \tau \in \mathbb{R} ^n τRn : joint torque (generalized input)
y y y : output (variable to be controlled) —— can be any func of q q q , e.g. y = q , y = [ T ( q ) ] ∈ S E ( 3 ) y=q,y=\left[ T\left( q \right) \right] \in SE\left( 3 \right) y=q,y=[T(q)]SE(3)

  • Motion Control Problems : Let y y y track given reference y d y_{\mathrm{d}} yd
    在这里插入图片描述
    often times q d q_{\mathrm{d}} qd is given by planner represented by polynomials , so that q ˙ d , q ¨ d \dot{q}_{\mathrm{d}},\ddot{q}_{\mathrm{d}} q˙d,q¨d can be easily obtained

2.2 Variations in Robot Motion Control

  • Joint-space vs. Task-space control
    Joint-space : y ( t ) = q ( t ) y\left( t \right) =q\left( t \right) y(t)=q(t) , i.e. , want q ( t ) q\left( t \right) q(t) to track a given q d ( t ) q_{\mathrm{d}}\left( t \right) qd(t) joint reference
    Task-space : y ( t ) = [ T ( q ( t ) ) ] ∈ S E ( 3 ) y\left( t \right) =\left[ T\left( q\left( t \right) \right) \right] \in SE\left( 3 \right) y(t)=[T(q(t))]SE(3) denotes end-effector pose/configuration, we want y ( t ) y\left( t \right) y(t) to track y d ( t ) y_{\mathrm{d}}\left( t \right) yd(t)

  • Actuation models:
    Velocity source : u = q ˙ u=\dot{q} u=q˙ —— directly control velocity
    Acceleration sources : u = q ¨ u=\ddot{q} u=q¨ —— directly control acceleration
    Torque sources : u = τ u=\tau u=τ —— directly control torque
    在这里插入图片描述
    Acutation model make sense if for ant given u u u , the joint velocity q ˙ \dot{q} q˙ can immediatly reach u u u

Motion Control Problem
Design u u u to set y y y track desired reference y d y_{\mathrm{d}} yd

  • Depending on our assumption on u / y u/y u/y
    output y y y —— 6大基本问题
    y ↔ q ∈ R n y\leftrightarrow q\in \mathbb{R} ^n yqRn - joint variable : Joint space motion control (Velocity-resolved Joint-space control ; Acceleration-resolved Joint-space control ; Torque-resolved Joint-space control ; )
    y ↔ [ T ( q ) ] ∈ S E ( 3 ) y\leftrightarrow \left[ T\left( q \right) \right] \in SE\left( 3 \right) y[T(q)]SE(3) or y = f ( q ) y=f\left( q \right) y=f(q) - task space variable - e.g. origin of end-effector frame : Task space motion control (Velocity-resolved Task-space ; Acceleration-resolved Task-space ; Torque-resolved Task-space ; )

Linear control / feedback lineariazation

3. Motion Control with Velocity/Acceleration as Input

3.1 Velocity-Resolved Control

Each joints’ velocity q ˙ i \dot{q}_{\mathrm{i}} q˙i can be directly controlled

Good approximation for hydraulic actuators

Common approxiamtion of the outer-loop control for the Inner / outer loop control setup
在这里插入图片描述

3.2.1 Velocity-Resolved Joint Space Control

Joint-space ‘dynamics’ : single integrator q ˙ = u \dot{q}=u q˙=u

Joint-space tracking becomes standard linear tracking control problem : u = q ˙ d + K 0 q ¨ ⇒ q ~ ˙ + K 0 q ¨ = 0 u=\dot{q}_{\mathrm{d}}+K_0\ddot{q}\Rightarrow \dot{\tilde{q}}+K_0\ddot{q}=0 u=q˙d+K0q¨q~˙+K0q¨=0 , where q ~ = q d − q \tilde{q}=q_{\mathrm{d}}-q q~=qdq is the joint position error. —— stable if e i g ( − K 0 ) ∈ O L H P eig\left( -K_0 \right) \in OLHP eig(K0)OLHP

The error dynamic is stable if − K 0 -K_0 K0 is Hurwitz

3.2.2 Velocity-Resolved Task Space Control

For task space control , y = [ T ( q ) ] y=\left[ T\left( q \right) \right] y=[T(q)] needs to track y d y_{\mathrm{d}} yd , y y y can be ant function of q q q, in particular , it can represents position and/or the end-effector frame

Taking derivatives of y y y , and letting u = q ˙ u=\dot{q} u=q˙ , we have : y ˙ = J a ( q ) u \dot{y}=J_{\mathrm{a}}\left( q \right) u y˙=Ja(q)u
Note that q q q is function of y y y through inverse kinematics ( q = I K ( y ) q=IK\left( y \right) q=IK(y))
So the above dynamics can be written in terms of y y y and u u u only. The detailed form can be quite complex in general y ˙ = J a ( I K ( y ) ) u \dot{y}=J_{\mathrm{a}}\left( IK\left( y \right) \right) u y˙=Ja(IK(y))u

  1. Let v y v_{\mathrm{y}} vy be virtual control y ˙ = v y \dot{y}=v_{\mathrm{y}} y˙=vy design v y v_{\mathrm{y}} vy to track y d y_{\mathrm{d}} yd (same as above)
  2. Find actual control u u u such that J a ( I K ( y ) ) u ≈ v y J_{\mathrm{a}}\left( IK\left( y \right) \right) u\approx v_{\mathrm{y}} Ja(IK(y))uvy

在这里插入图片描述
在这里插入图片描述
We can design outer-loop controller as if we can directly control y ˙ \dot{y} y˙
y ˙ = v y = y ˙ d + K ( y d − y ) ⟹ p l u g    i n    y ˙ = v y    y ~ ˙ = − K y ~ \dot{y}=v_{\mathrm{y}}=\dot{y}_{\mathrm{d}}+K\left( y_{\mathrm{d}}-y \right) \overset{plug\,\,in\,\,\dot{y}=v_{\mathrm{y}}\,\,}{\Longrightarrow}\dot{\tilde{y}}=-K\tilde{y} y˙=vy=y˙d+K(ydy)pluginy˙=vyy~˙=Ky~
We can select K K K such that − K -K K is Hurtwiz , object of inner loop : determine u = q ˙ u=\dot{q} u=q˙ such that y ˙ ≈ v y \dot{y}\approx v_{\mathrm{y}} y˙vy

System(2) is nonlinear system , a commeon way is to break it into inner-outer loop , where the outer loop directly control velocity of y y y, and the inner loop tries to find u u u to generate desired task space velocity

Outer loop : y ˙ = v y \dot{y}=v_{\mathrm{y}} y˙=vy , where control v y = y ˙ d + K 0 y ~ v_{\mathrm{y}}=\dot{y}_{\mathrm{d}}+K_0\tilde{y} vy=y˙d+K0y~ , resulting in task-space closed-loop error dynamics: y ~ ˙ + K 0 y ~ = 0 \dot{\tilde{y}}+K_0\tilde{y}=0 y~˙+K0y~=0

Above task space tracking relies on a fictitious control v y v_{\mathrm{y}} vy , i.e. , it assumes y ˙ \dot{y} y˙ can be arbitrarily controlled by selecting appropriate u = q ˙ u=\dot{q} u=q˙ , which is true if J a J_{\mathrm{a}} Ja is full-row rank

Inner loop : Given v y v_{\mathrm{y}} vy from the outer loop, find the joint velocity control by solving
{ min ⁡ u ∥ v y − J a ( q ) u ∥ 2 + r e g u l a r i z a t i o n    t e r m s u b j . t o    : C o n s t r a i n t s    o n    u    , e . g . { q ˙ min ⁡ ⩽ u ⩽ q ˙ max ⁡ q min ⁡ ⩽ q + u Δ t ⩽ q max ⁡ \begin{cases} \min _{\mathrm{u}}\left\| v_{\mathrm{y}}-J_{\mathrm{a}}\left( q \right) u \right\| ^2+regularization\,\,term\\ subj.to\,\,: Constraints\,\,on\,\,u\,\,, e.g.\begin{cases} \dot{q}_{\min}\leqslant u\leqslant \dot{q}_{\max}\\ q_{\min}\leqslant q+u\varDelta t\leqslant q_{\max}\\ \end{cases}\\ \end{cases} minuvyJa(q)u2+regularizationtermsubj.to:Constraintsonu,e.g.{q˙minuq˙maxqminq+uΔtqmax
Inner-loop is essentially a differential IK controller
One can also use the pseudo-inverse control u = J a † v y u={J_{\mathrm{a}}}^{\dagger}v_{\mathrm{y}} u=Javy

3.2 Acceleration-Resolved Control

3.2.1 Acceleration-Resolved Control in Joint Space

Joint acceleration cna be directly controlled , resulting in double-integrator dynamics q ¨ = u \ddot{q}=u q¨=u . Given q d q_{\mathrm{d}} qd reference , we want q → q d q\rightarrow q_{\mathrm{d}} qqd (double integartor)

Joint-space tracking becomes standard linear tracking control problem for double-integrator system:
u = q ¨ d + K 1 q ~ ˙ + K 0 q ~ = 0 , q ~ ∈ R n u=\ddot{q}_{\mathrm{d}}+K_1\dot{\tilde{q}}+K_0\tilde{q}=0,\tilde{q}\in \mathbb{R} ^n u=q¨d+K1q~˙+K0q~=0,q~Rn
—— PD control , closed-loop system , where q ~ = q d − q \tilde{q}=q_{\mathrm{d}}-q q~=qdq is the joint position error.

Stablility condition : Let x = [ q ~ q ~ ˙ ] ∈ R 2 n x=\left[ \begin{array}{c} \tilde{q}\\ \dot{\tilde{q}}\\ \end{array} \right] \in \mathbb{R} ^{2n} x=[q~q~˙]R2n , [ 0 E − K 0 − K 1 ] [ q ~ q ~ ˙ ] , x ˙ = A x \left[ \begin{matrix} 0& E\\ -K_0& -K_1\\ \end{matrix} \right] \left[ \begin{array}{c} \tilde{q}\\ \dot{\tilde{q}}\\ \end{array} \right] ,\dot{x}=Ax [0K0EK1][q~q~˙],x˙=Ax
closed-loop system is stable . if e i g ( A ) ∈ O L H P eig\left( A \right) \in OLHP eig(A)OLHP or A A A is Hurwitz

3.2.2 Acceleration-Resolved Control in Task Space

For task space control , y = [ T ( q ) ] ∈ S E ( 3 ) y=\left[ T\left( q \right) \right] \in SE\left( 3 \right) y=[T(q)]SE(3) needs to track y d y_{\mathrm{d}} yd
在这里插入图片描述
Note : For y = f ( q ) y=f\left( q \right) y=f(q) y ˙ = J a ( q ) q ˙ \dot{y}=J_{\mathrm{a}}\left( q \right) \dot{q} y˙=Ja(q)q˙ and y ¨ = J ˙ a ( q ) q ˙ + J a ( q ) q ¨ ⇒ y ¨ = J ˙ a ( q ) q ˙ + J a ( q ) u ⇐ \ddot{y}=\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}+J_{\mathrm{a}}\left( q \right) \ddot{q}\Rightarrow \ddot{y}=\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}+J_{\mathrm{a}}\left( q \right) u\Leftarrow y¨=J˙a(q)q˙+Ja(q)q¨y¨=J˙a(q)q˙+Ja(q)u nonlinear dynamics

Following the same inner-outer loop strategy deiscussed before . Introduce virtual control , a y a_{\mathrm{y}} ay such that y ¨ = a y \ddot{y}=a_{\mathrm{y}} y¨=ay , we can design controller for a y a_{\mathrm{y}} ay to let y → y d y\rightarrow y_{\mathrm{d}} yyd

Outer-loop dynamics : y ¨ = a y \ddot{y}=a_{\mathrm{y}} y¨=ay , with a y a_{\mathrm{y}} ay being the outer-loop control input a y = y ¨ d + K 1 y ~ ˙ + K 0 y ~ ⇒ y ~ ¨ + K 1 y ~ ˙ + K 0 y ~ = 0 a_{\mathrm{y}}=\ddot{y}_{\mathrm{d}}+K_1\dot{\tilde{y}}+K_0\tilde{y}\Rightarrow \ddot{\tilde{y}}+K_1\dot{\tilde{y}}+K_0\tilde{y}=0 ay=y¨d+K1y~˙+K0y~y~¨+K1y~˙+K0y~=0
在这里插入图片描述
—— PD control , stable if [ 0 E − K 0 − K 1 ] \left[ \begin{matrix} 0& E\\ -K_0& -K_1\\ \end{matrix} \right] [0K0EK1] Hurwitz

Inner-loop : given a y a_{\mathrm{y}} ay from outer loop , find the “best” joint acceleration:
{ min ⁡ u ∥ a y − J ˙ a ( q ) q ˙ − J a ( q ) u ∥ 2 + r e g u l a r i z a t i o n    t e r m s u b j . t o    : C o n s t r a i n t s    o n    u    \begin{cases} \min _{\mathrm{u}}\left\| a_{\mathrm{y}}-\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}-J_{\mathrm{a}}\left( q \right) u \right\| ^2+regularization\,\,term\\ subj.to\,\,: Constraints\,\,on\,\,u\,\,\\ \end{cases} minu ayJ˙a(q)q˙Ja(q)u 2+regularizationtermsubj.to:Constraintsonu
—— u u u : optimization variable , J ˙ a ( q ) , q ˙ , q \dot{J}_{\mathrm{a}}\left( q \right) ,\dot{q},q J˙a(q),q˙,q - known
{ A c c    : q ¨ min ⁡ ⩽ u ⩽ q ¨ max ⁡ V e l    : q ˙ min ⁡ ⩽ q + u Δ t ⩽ q ˙ max ⁡ \begin{cases} Acc\,\,: \ddot{q}_{\min}\leqslant u\leqslant \ddot{q}_{\max}\\ Vel\,\,: \dot{q}_{\min}\leqslant q+u\varDelta t\leqslant \dot{q}_{\max}\\ \end{cases} {Acc:q¨minuq¨maxVel:q˙minq+uΔtq˙max

Mathematically , the above problem is the same as the Differential IK problem

At any given time , q ˙ , q \dot{q},q q˙,q can be measured , and then y , y ˙ y,\dot{y} y,y˙ can be computed, which allows us to compute outer loop control a y a_{\mathrm{y}} ay and inner loop control u u u

4. Motion Control with Torque as Input and Task Space Inverse Dynamics

4.1 Recall Properties of Robot Dynamics

For fully actuated robot :
τ = M ( q ) q ¨ + C ( q , q ˙ ) q ˙ + g ( q ) \tau =M\left( q \right) \ddot{q}+C\left( q,\dot{q} \right) \dot{q}+g\left( q \right) τ=M(q)q¨+C(q,q˙)q˙+g(q)
M ( q ) = ∑ J i T [ I i ] 6 × 6 J i ∈ R n × n M\left( q \right) =\sum{{J_{\mathrm{i}}}^{\mathrm{T}}\left[ \mathcal{I} _{\mathrm{i}} \right] _{6\times 6}J_{\mathrm{i}}}\in \mathbb{R} ^{n\times n} M(q)=JiT[Ii]6×6JiRn×n

There are many valid difinitions of C ( q , q ˙ ) C\left( q,\dot{q} \right) C(q,q˙) , typical choice for C C C include:
C i j = ∑ k 1 2 ( ∂ M i j ∂ q k + ∂ M i k ∂ q j − ∂ M j k ∂ q i ) C_{\mathrm{ij}}=\sum_k^{}{\frac{1}{2}\left( \frac{\partial M_{\mathrm{ij}}}{\partial q_{\mathrm{k}}}+\frac{\partial M_{\mathrm{ik}}}{\partial q_{\mathrm{j}}}-\frac{\partial M_{\mathrm{jk}}}{\partial q_{\mathrm{i}}} \right)} Cij=k21(qkMij+qjMikqiMjk)
For the above defined C C C , we have M ˙ − 2 C \dot{M}-2C M˙2C is skew symmetric
For all valid C C C, we have q ˙ T [ M ˙ − 2 C ] q ˙ = 0 \dot{q}^{\mathrm{T}}\left[ \dot{M}-2C \right] \dot{q}=0 q˙T[M˙2C]q˙=0
These properties play improtant role in designing motion controller

4.2 Computed Torque Control

For fully-actuated robot, we have M ( q ) ≻ 0 M\left( q \right) \succ 0 M(q)0 and q ¨ \ddot{q} q¨ can be arbitrarily specified through torque control u = τ u=\tau u=τ
q ¨ = M − 1 ( q ) [ u − C ( q , q ˙ ) q ˙ − g ( q ) ] \ddot{q}=M^{-1}\left( q \right) \left[ u-C\left( q,\dot{q} \right) \dot{q}-g\left( q \right) \right] q¨=M1(q)[uC(q,q˙)q˙g(q)]

we know how to design controller if u = q ¨ u=\ddot{q} u=q¨
在这里插入图片描述
Thus , for fully-acuated robot, torque controlled case can be reduced to the acceleration-resolved case

Outer loop: q ¨ = a q \ddot{q}=a_{\mathrm{q}} q¨=aq with joint acceleration as control input
a q = q ¨ + K 1 y ~ ˙ + K 0 y ~ ⇒ q ~ ¨ + K 1 q ~ ˙ + K 0 q ~ = 0 a_{\mathrm{q}}=\ddot{q}+K_1\dot{\tilde{y}}+K_0\tilde{y}\Rightarrow \ddot{\tilde{q}}+K_1\dot{\tilde{q}}+K_0\tilde{q}=0 aq=q¨+K1y~˙+K0y~q~¨+K1q~˙+K0q~=0

Inner loop : since M ( q ) M\left( q \right) M(q) is square and nonsingular , inner loop control u u u can be found analytically:
u = M ( q ) ( q ¨ d + K 1 q ~ ˙ + K 0 q ~ ) + C ( q , q ˙ ) q ˙ + g ( q ) u=M\left( q \right) \left( \ddot{q}_{\mathrm{d}}+K_1\dot{\tilde{q}}+K_0\tilde{q} \right) +C\left( q,\dot{q} \right) \dot{q}+g\left( q \right) u=M(q)(q¨d+K1q~˙+K0q~)+C(q,q˙)q˙+g(q)
在这里插入图片描述
The control law is a function of q , q ˙ q,\dot{q} q,q˙ and the reference q d q_{\mathrm{d}} qd. It is called computed-torque control.

The control law also relies on system model M , C , g M,C,g M,C,g if these model information are not accurate, the control will not perform well.
y = f ( q ) , y ¨ = J ˙ a ( q ) q ˙ + J a ( q ) M − 1 ( u − C − g ) y=f\left( q \right) ,\ddot{y}=\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}+J_{\mathrm{a}}\left( q \right) M^{-1}\left( u-C-g \right) y=f(q),y¨=J˙a(q)q˙+Ja(q)M1(uCg)
Idea easily extends to task space : y ˙ = J a ( q ) q ˙ \dot{y}=J_{\mathrm{a}}\left( q \right) \dot{q} y˙=Ja(q)q˙ and y ¨ = J ˙ a ( q ) q ˙ + J a ( q ) q ¨ \ddot{y}=\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}+J_{\mathrm{a}}\left( q \right) \ddot{q} y¨=J˙a(q)q˙+Ja(q)q¨ —— τ = u = τ , q ¨ = M − 1 [ u − C − g ] \tau =u=\tau ,\ddot{q}=M^{-1}\left[ u-C-g \right] τ=u=τ,q¨=M1[uCg]

Outer loop : y ¨ = a y \ddot{y}=a_{\mathrm{y}} y¨=ay and a y = y ¨ d + K 1 y ~ ˙ + K 0 y ~ a_{\mathrm{y}}=\ddot{y}_{\mathrm{d}}+K_1\dot{\tilde{y}}+K_0\tilde{y} ay=y¨d+K1y~˙+K0y~

Inner loop : sekect torque control u = τ u=\tau u=τ by
{ min ⁡ u ∥ a y − J ˙ a ( q ) q ˙ − J a ( q ) M − 1 ( u − C q ˙ − g ) ∥ 2 s u b j . t o    : C o n s t r a i n t s    \begin{cases} \min _{\mathrm{u}}\left\| a_{\mathrm{y}}-\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}-J_{\mathrm{a}}\left( q \right) M^{-1}\left( u-C\dot{q}-g \right) \right\| ^2\\ subj.to\,\,: Constraints\,\,\\ \end{cases} minu ayJ˙a(q)q˙Ja(q)M1(uCq˙g) 2subj.to:Constraints
If J a J_{\mathrm{a}} Jais invertible and we don’t impose additional torque constraints, analytical control law can be easily obtained —— u = ( J a ( q ) M − 1 ) − 1 ( a y − J ˙ a ( q ) q ˙ . . . ) u=\left( J_{\mathrm{a}}\left( q \right) M^{-1} \right) ^{-1}\left( a_{\mathrm{y}}-\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}... \right) u=(Ja(q)M1)1(ayJ˙a(q)q˙...)

4.3 Inverse Dynamics Control

The computed-torque controller above is also canned inverse dynamics control

Forward dynamics : given τ \tau τ to compute q ¨ \ddot{q} q¨ —— from torque to motion

Inverse dynamics : given desired acceleration a q a_{\mathrm{q}} aq, we inverted it to find the required control by u = M a q + C q ˙ + g u=Ma_{\mathrm{q}}+C\dot{q}+g u=Maq+Cq˙+g

Task space case can be viewed as inverting the task space dynamics —— Given a y a_{\mathrm{y}} ay ( y y y task space) , find τ \tau τ such that y ¨ = a y \ddot{y}=a_{\mathrm{y}} y¨=ay

With recent advances in optimization , it is often preferred to do ID with quedratic program
在这里插入图片描述
For example, above equation can be viewed as task-space ID. We can incorporate torque contraints explicitly as follows:
{ min ⁡ u ∥ a y − J ˙ a ( q ) q ˙ − J a M − 1 ( u − C q ˙ − g ) ∥ 2 s u b j . t o    : u − ⩽ u    ⩽ u +    \begin{cases} \min _{\mathrm{u}}\left\| a_{\mathrm{y}}-\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}-J_{\mathrm{a}}M^{-1}\left( u-C\dot{q}-g \right) \right\| ^2\\ subj.to\,\,: u_-\leqslant u\,\,\leqslant u_+\,\,\\ \end{cases} minu ayJ˙a(q)q˙JaM1(uCq˙g) 2subj.to:uuu+
optimization variable u ∈ R n u\in \mathbb{R} ^n uRn

This is equivalent to the following more popular form:
{ min ⁡ u , q ¨ ∥ a y − J ˙ a q ˙ − J a q ¨ ∥ 2 s u b j . t o    : M q ¨ + C q ˙ + g = u u − ⩽ u ∈ R n    ⩽ u +    \begin{cases} \underset{u,\ddot{q}}{\min}\left\| a_{\mathrm{y}}-\dot{J}_{\mathrm{a}}\dot{q}-J_{\mathrm{a}}\ddot{q} \right\| ^2\\ subj.to\,\,: \begin{array}{c} M\ddot{q}+C\dot{q}+g=u\\ u_-\leqslant u\in \mathbb{R} ^n\,\,\leqslant u_+\,\,\\ \end{array}\\ \end{cases} u,q¨min ayJ˙aq˙Jaq¨ 2subj.to:Mq¨+Cq˙+g=uuuRnu+
optimization variable u , q ¨ ∈ R n u,\ddot{q}\in \mathbb{R} ^n u,q¨Rn

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1344067.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++:第十一讲DFS深搜

Everyday English Your optimal career is simply this: Share the real you with physical world through th e process of creative self-expression. 你的最佳职业很简单,就是这样:通过创造性自我表达的途径和世界分享真实的你。 前言 今天带着大家…

【音视频 ffmpeg 学习】 跑示例程序 持续更新中

环境准备 在上一篇文章 把mux.c 拷贝到main.c 中 使用 attribute(unused) 消除警告 __attribute__(unused)/** Copyright (c) 2003 Fabrice Bellard** Permission is hereby granted, free of charge, to any person obtaining a copy* of this software and associated docu…

scanf函数返回值被忽略

心怀希望的前进 前言 最近在复习c语言,发现了许多之前不了解的知识,今天想来与大家分享一下scanf返回值值被忽略的问题。 很多人应该都在vs中见到过,我们先说原因,再说改进方法 原因: scanf函数在读取数据时不会检…

kafka实现延迟消息

背景 我们知道消息中间件mq是支持延迟消息的发送功能的,但是kafka不支持这种直接的用法,所以我们需要独立实现这个功能,以下是在kafka中实现消息延时投递功能的一种方案 kafka实现延时消息 主要的思路是增加一个检测服务,这个检…

Python武器库开发-武器库篇之上传本地仓库到Git(三十八)

武器库篇之上传本地仓库到Git(三十八) 当我们在Git中创建远程仓库和进行了SSH key免密登陆之后,我们点击 Your respositories 可以查看我们所创建的远程仓库,如图所示: 如果我们需要将本地的仓库上传到Git,首先我们需要建立一个本…

数据结构与算法 - 查找

文章目录 第1关:实现折半查找第2关:实现散列查找 第1关:实现折半查找 代码如下: /*************************************************************date: April 2009copyright: Zhu EnDO NOT distribute this code. ***********…

Python实现的面部健康特征识别系统

Python实现的面部健康特征识别系统 引言1. 数据集获取与准备2. 模型训练3. Flask框架的应用4. 前台识别测试界面 结论与展望 引言 本文将介绍一个基于Python的面部健康特征判别系统,该系统利用互联网获取的公开数据集,分为健康、亚健康和不健康三个类别…

蓝牙曝底层安全漏洞,数十亿设备受影响

内容概括: Eurecom的研究人员近期分享了六种新型攻击方式,统称为"BLUFFS",这些攻击方式能够破坏蓝牙会话的保密性,使设备容易受到冒充和中间人攻击(MitM)。攻击发现者Daniele Antonioli解释道,"BLUFFS…

Sentinel-3如何处理并下载LST数据-陆地表面温度”(Land Surface Temperature)

LST 通常指的是“陆地表面温度”(Land Surface Temperature)。陆地表面温度是指地球表面上陆地部分的温度,而不包括水体表面。LST 是遥感技术中一个重要的参数,可以通过卫星遥感等手段进行测量和监测。 陆地表面温度对于许多领域…

WPF 漂亮长方体、正文体简单实现方法 Path实现长方体 正方体方案 WPF快速实现长方体、正方体的方法源代码

这段XAML代码在WPF中实现了一个类似长方体视觉效果的图形 声明式绘制:通过Path、PathGeometry和PathFigure等元素组合,能够以声明方式精确描述长方体每个面的位置和形状,无需编写复杂的绘图逻辑,清晰直观。 层次结构与ZIndex控制…

利用 IntelliJ IDEA 整合 GitHub 实现项目版本控制与协作管理

目录 前言1 设置GitHub登录账号2 将项目分享到GitHub3 IntelliJ IDEA 中导入Github项目4 往GitHub推送代码4.1 Commit Change(提交到本地库)4.2 Git -> Repository -> Push(推送到远程库) 5 拉取远程库代码到本地6 克隆远程…

Python列表的介绍与操作 增改查,连接,赋值,复制,清空

列表 在日常中我们通过给变量赋值来存储数据,比如 a "hello" b "world" c "你好啊" d "....."由于变量一次只能存储一个数据,但我们如果想一次存储多个数据,的话这样存储会很复杂,所以,我们可以通过列表 列表(List)是Python中的…

彻底解决可视化:中文字体显示「豆腐块」问题!

问题复现 # 导入必要的包 library(ggplot2)# 设置主题样式 theme_set(theme_minimal(base_size 15))# 创建一个简单的折线图 ggplot(data data.frame(x c(1, 2, 3), y c(1, 2, 3)), aes(x x, y y)) geom_line(color "blue") labs(title "欢迎关注公众号…

鸿蒙HarmonyOS-图表应用

简介 随着移动应用的不断发展,数据可视化成为提高用户体验和数据交流的重要手段之一。在HarmonyOS应用开发中,一个强大而灵活的图表库是实现这一目标的关键。而MPChart就是这样一款图表库,它为开发者提供了丰富的功能和灵活性,使得…

从0到1浅析Redis服务器反弹Shell那些事

文章目录 前言Redis服务1.1 特点与应用1.2 安装与使用1.3 语法和配置1.4 未授权访问 反弹Shell2.1 Web服务写入Webshell2.2 Linux定时任务反弹shell2.3 /etc/profile.d->反弹shell2.4 写入ssh公钥登录服务器2.5 利用Redis主从复制RCE2.6 SSRF漏洞组合拳->RCE 总结 前言 …

ES6之解构赋值详解

✨ 专栏介绍 在现代Web开发中,JavaScript已经成为了不可或缺的一部分。它不仅可以为网页增加交互性和动态性,还可以在后端开发中使用Node.js构建高效的服务器端应用程序。作为一种灵活且易学的脚本语言,JavaScript具有广泛的应用场景&#x…

网络交换机端口管理会面临的问题

交换机端口管理是跟踪网络交换机及其端口连接详细信息的过程,在大型网络中,交换机端口管理过程通常使用自动化交换机端口管理工具执行。 通过网络交换机端口提供的完全控制和可见性使交换机端口管理工具在管理网络时必不可少,在网络中部署交…

【Java开发岗面试】八股文—Java基础集合多线程

声明: 背景:本人为24届双非硕校招生,已经完整经历了一次秋招,拿到了三个offer。本专题旨在分享自己的一些Java开发岗面试经验(主要是校招),包括我自己总结的八股文、算法、项目介绍、HR面和面试…

苹果电脑Dock栏优化软件 mac功能亮点

hyperdock mac是一款Dock优化软件,hyperdock支持使用窗口自动排列功能,您可以直接通过将窗口拖拉至屏幕上方来快速最大化至全屏,又或者拖动到左右来进行左分屏和右分屏。而且Dock优化软件还有一个特色便是对Dock的强大管理哪里能力&#xff0…

【软件工程】走近演化过程模型:软件开发的不断进化之路

🍎个人博客:个人主页 🏆个人专栏: 软件工程 ⛳️ 功不唐捐,玉汝于成 目录 前言: 正文 演化过程模型(Evolutionary Model) 介绍: 解释: 优缺点&#x…