深度学习 | DRNN、BRNN、LSTM、GRU

news2025/7/14 21:12:19


 1、深度循环神经网络

1.1、基本思想

        能捕捉数据中更复杂模式并更好地处理长期依赖关系。

        深度分层模型比浅层模型更有效率。

        Deep RNN比传统RNN表征能力更强。

        那么该如何引入深层结构呢?

传统的RNN在每个时间步的迭代都可以分为三个部分:

1.2、三种深层方式

        

        在传统RNN中,这三处都没有中间层,变换函数都是线性变换紧跟着一个非线性函数,也就是所谓的浅层变换。

        所以就有三种思路,来看看各个思路的变体:

DT-RNN

        这样的好处就是它允许隐变量 ht 适应输入模式 xt 的快速变换,而且它保留了对过去训练的提炼和总结。

        既能适应新变换又不忘初心。这种高度非线性转换可以通过若干个 MLP 全连接层(多层感知机)来实现。

        

DT(S) - RNN

        由于DT-RNN增加了Loss的梯度,沿着时间反向传播时需要遍历更多的非线性的步数。

        

DOT-RNN

        

        

Stacked RNN

                

模型比较

        

        DT-RNN 和 Stacked  RNN 是正交的:

        堆叠的RNN可以出来输入序列中多个时间尺度,而DT-RNN做不到,但是如果将多个DT-RNN堆叠起来,他就可以同时拥有DT-RNN和Stacked RNN 的能力了。

小结

        在传统RNN的基础上,增加多个浅变换结构的隐藏层,实现对复杂特征更有效的捕捉和处理。

        


 2、双向循环神经网络

2.1、单向RNN的局限

        多数RNN只有一个因果结构;

        许多应用中,输出预测可能依赖整个输入序列;

        往往需要捕捉序列中上下文之间的关系;

2.2、双向网络结构 —— 两个互相叠加的RNN

       

        输入不仅取决于先前,还取决于未来。

        

        六个权重矩阵。

        

 2.3、训练过程

        两遍运算,输入翻转。

         

2.4、主要特点分析

        使用来自序列两端的信息来估计输出;

        前向传播需要在双向层中进行,反向传播依赖前向传播结果;

        计算速度慢,梯度求解链很长,训练代价高;

        主要用于序列编码和双向上下文观测统计。


 3、长短期记忆网络 LSTM

         Long-Short Term Memory

 3.1、RNN的问题

        处理长序列数据时会有梯度消失或爆炸的问题(权重矩阵连乘)

        RNN的计算效率相对较低。

        

        长时间以前的记忆基本对现在没有什么影响了。

        

        

3.2、基本思想

        保留较长序列数据中重要信息,忽略不重要信息。

        

        RNN都有重复链式结构;

        标准RNN结构简单;

        LSTM链式结构特殊;

        

3.3、门控记忆单元

        门(gate)控制记忆单元,信息可以沿着这个链条传送。

        原来的RNN隐藏层中只有一个状态 h ,它对短期输入是很敏感的。

        现在人为添加状态 c ,来保持长期记忆。

        打个比方来讲,底下的短期链条相当于时刻发生的事情,上面的链条相当于日记本,记录了长期的记忆 Cells statement 。

        那该怎么控制这种长期的状态 c 呢?

        在任意的时刻 t ,我们需要三件事情:

                t-1 时刻传入的状态 c t-1 中要决定有多少信息需要保留;

                当前时刻的输入信息有多少需要传递到 t+1 时刻;

                当前时刻的隐层输出 ht 是什么。

        ———— LSTM专门设计了 GRU门控记忆单元 来控制信息的保留和丢弃。具体来说包括了三种门。每个门就是选择信息通过的方式。

        

        先来介绍下他们的基本工作原理,之所以称之为门,一定要有一个控制信号,每个门是由一个sigmoid神经网络层以及逐点乘法运算组成的。

        三个门的作用可以分别理解为:橡皮擦(擦除一些没有用的记忆)、铅笔(写上一些新的记忆)、再输出。

        1、遗忘门(forget gate)

                决定去除那些信息。过滤重要的信息,忽略无关的信息。

                h t-1:上一时刻记忆的状态;

                x t:当前时间步输入的信息;

                这两个的加权和经过一个sigmiod函数,产生遗忘门的输出 f t ,再作用到 c t-1。

                因为 f t 是一个0到1之间的数(橡皮擦),相当于对 c t-1 里面的信息进行了一些选择。

                

        2、输入门 (input gate)

                决定什么新的信息将被保留下来。

                在日记本上增加那些记录。

                        sigmiod层决定我们将更新哪些值;

                        tanh 层 创建一个新的候选值向量。

                

        输入门和候选记忆单元联合更新状态。

        用橡皮在日记本上删减,再用铅笔添加记录。最后得到了新的长期记忆 c t 。

                

         

        3、输出门(output gate)

                控制记忆细胞更新时所使用的输入信息。

                日记更新当前短期记忆。

                 控制长期记忆更新并输出给短期记忆 h t 。

                 先运行一个 sigmoid 层决定要输出 cell 状态的哪些部分 o t (告诉长期记忆哪些部分要去输出);

                 将cell状态 o t 加上tanh函数之后得到输出 h t 。 tanh函数将c t 值推到 -1 到 1之间。

               


 4、门控循环单元 GRU

         Gated Recurrent Unit

        2014年提出,主要针对LSTM模型计算比较复杂容易出现梯度消失或爆炸等问题进行改进。

4.1、与LSTM的区别

        1、将LSTM原来的三个门简化成为两个:重置门和更新门

        2、不保留单元状态,只保留隐藏状态作为单元输出

        3、重置门直接作用于前一时刻的隐藏状态

        

4.2、基本原理

        引入了两种“门”来控制信息的流动,即重置门(reset gate) 和更新门 (update gate)。

        这两种门都是由一个神经元组成的,通过对输入和上一时刻隐藏状态进行计算来得到当前时刻的输出。

        

4.2.1、重置门(Reset Gate)

        用来决定从上一时刻的隐藏状态中“复制”多少信息。

        重置门的输出值在0到1之间,表示从上一时刻的隐藏状态中复制的信息量。

        

4.2.2、更新门 (Update Gate)

        用来决定从上一时刻的隐藏状态中“更新”多少信息。

        

4.2.3、候选隐状态

        候选隐状态是用来计算当前时刻隐藏状态的一个中间结果,将当前时刻的输入与上一时刻隐藏状态结合起来从而得到当前时刻隐藏状态输出 h t 。

        由当前时刻的输入 x t 和上一时刻的隐藏状态 h t-1 通过权重矩阵和偏置向量计算向量得到,并且通过 tanh 函数得到。

        中间小圆圈表示的是元素级别的乘法运算,不同于矩阵乘法。

        

        在计算当前时刻的隐藏状态 h t 时,会与更新门的输出 z t 一起计算,

        当 z t 比较大时,隐藏状态会更多的使用候选隐状态;反之则使用上一时刻的隐藏状态 h t-1;

4.2.4、隐状态

         模型在处理序列数据时记录的当前时刻之前的信息。

         隐状态在计算中主要有两个作用,

                1、记录序列数据的上下文信息,帮助模型更好的处理序列数据。

                2、控制信息流动,来解决梯度消失和梯度爆炸的问题,提高模型效率。

        

4.3、计算步骤

        1、计算重置门输出 rt

        2、计算更新门输出 zt

        3、计算候选隐状态 (注意私用tanh 和元素级相乘)

        4、计算最终隐藏层输出 ht

        


5、复杂RNN代码实现

        DRNN-更深的网络结构

        BRNN-双向的训练方向

        LSTM-更强的记忆能力

        GRU-更简洁而高效

5.1. 模型定义

1.1 深度循环神经网络

rnn模型默认激活函数是tanh,会得到loss太大了,模型几乎无法拟合样本,这是由于

数据集中 收盘价 Close 非常大,这样会导致rnn模型很容易出现 梯度消失和梯度爆炸。

我们可以通过修改激活函数来解决,初始化 加入 nonlinearity = 'relu'。

或者可以对数据进行归一化。若结果依旧不好,可能是因为学习率设置过大,一开始是0.1。但是如果出现没有拟合,是因为不能拟合原始数据了,要拟合归一化后的x。

from torch import nn
from tqdm import *

class DRNN(nn.Module):
    def __init__(self, input_size, output_size, hidden_size, num_layers):
        super(DRNN, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True) 
        # batch_first 为 True时output的tensor为(batch,seq,feature),否则为(seq,batch,feature)
        self.linear = nn.Linear(hidden_size, output_size)
    
    def forward(self, x):
        # 初始化隐藏状态和细胞状态
        state = torch.zeros(self.num_layers, x.size(0), self.hidden_size)
        # 计算输出和最终隐藏状态
        output, _ = self.rnn(x, state)
        output = self.linear(output)
        return output
# 网络结构
model = DRNN(16, 16, 64, 2)
for name,parameters in model.named_parameters():
    print(name,':',parameters.size())
rnn.weight_ih_l0 : torch.Size([64, 16])
rnn.weight_hh_l0 : torch.Size([64, 64])
rnn.bias_ih_l0 : torch.Size([64])
rnn.bias_hh_l0 : torch.Size([64])
rnn.weight_ih_l1 : torch.Size([64, 64])
rnn.weight_hh_l1 : torch.Size([64, 64])
rnn.bias_ih_l1 : torch.Size([64])
rnn.bias_hh_l1 : torch.Size([64])
linear.weight : torch.Size([16, 64])
linear.bias : torch.Size([16])

1.2 双向循环神经网络

class BRNN(nn.Module):
    def __init__(self, input_size, output_size, hidden_size, num_layers):
        super(BRNN, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True) # bidirectional为True是双向
        self.linear = nn.Linear(hidden_size * 2, output_size)  # 双向网络,因此有双倍hidden_size
    
    def forward(self, x):
        # 初始化隐藏状态
        state = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size) # 需要双倍的隐藏层
        output, _ = self.rnn(x, state)
        output = self.linear(output)
        return output
# 网络结构
model = BRNN(16, 16, 64, 2)
for name,parameters in model.named_parameters():
    print(name,':',parameters.size())

隐藏层的维度64

rnn.weight_ih_l0 : torch.Size([64, 16])
rnn.weight_hh_l0 : torch.Size([64, 64])
rnn.bias_ih_l0 : torch.Size([64])
rnn.bias_hh_l0 : torch.Size([64])
rnn.weight_ih_l0_reverse : torch.Size([64, 16])
rnn.weight_hh_l0_reverse : torch.Size([64, 64])
rnn.bias_ih_l0_reverse : torch.Size([64])
rnn.bias_hh_l0_reverse : torch.Size([64])
rnn.weight_ih_l1 : torch.Size([64, 128])
rnn.weight_hh_l1 : torch.Size([64, 64])
rnn.bias_ih_l1 : torch.Size([64])
rnn.bias_hh_l1 : torch.Size([64])
rnn.weight_ih_l1_reverse : torch.Size([64, 128])
rnn.weight_hh_l1_reverse : torch.Size([64, 64])
rnn.bias_ih_l1_reverse : torch.Size([64])
rnn.bias_hh_l1_reverse : torch.Size([64])
linear.weight : torch.Size([16, 128])
linear.bias : torch.Size([16])

1.3 长短期记忆网络

class LSTM(nn.Module):
    def __init__(self, input_size, output_size, hidden_size, num_layers):
        super(LSTM, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) # LSTM
        self.linear = nn.Linear(hidden_size, output_size)
    
    def forward(self, x):
        output, _ = self.lstm(x)
        output = self.linear(output)
        return output
# 网络结构
model = LSTM(16, 16, 64, 2)
for name,parameters in model.named_parameters():
    print(name,':',parameters.size())

隐藏层的维度 256 ,四个矩阵 f i c o,4个64的维度。

lstm.weight_ih_l0 : torch.Size([256, 16])
lstm.weight_hh_l0 : torch.Size([256, 64])
lstm.bias_ih_l0 : torch.Size([256])
lstm.bias_hh_l0 : torch.Size([256])
lstm.weight_ih_l1 : torch.Size([256, 64])
lstm.weight_hh_l1 : torch.Size([256, 64])
lstm.bias_ih_l1 : torch.Size([256])
lstm.bias_hh_l1 : torch.Size([256])
linear.weight : torch.Size([16, 64])
linear.bias : torch.Size([16])

1.4 门控循环单元

class GRU(nn.Module):
    def __init__(self, input_size, output_size, hidden_size, num_layers):
        super(GRU, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True) # GRU
        self.linear = nn.Linear(hidden_size, output_size)
    
    def forward(self, x):
        output, _ = self.gru(x)
        output = self.linear(output)
        return output
# 网络结构
model = GRU(16, 16, 64, 2)
for name,parameters in model.named_parameters():
    print(name,':',parameters.size())

两个门~ r h z即 64x3!

gru.weight_ih_l0 : torch.Size([192, 16])
gru.weight_hh_l0 : torch.Size([192, 64])
gru.bias_ih_l0 : torch.Size([192])
gru.bias_hh_l0 : torch.Size([192])
gru.weight_ih_l1 : torch.Size([192, 64])
gru.weight_hh_l1 : torch.Size([192, 64])
gru.bias_ih_l1 : torch.Size([192])
gru.bias_hh_l1 : torch.Size([192])
linear.weight : torch.Size([16, 64])
linear.bias : torch.Size([16])

5.2. 模型实验

2.1 数据集加载

import pandas_datareader as pdr
dji = pdr.DataReader('^DJI', 'stooq')
dji
OpenHighLowCloseVolume
Date
2023-02-1033671.5433897.3133591.9933869.27289863415.0
2023-02-0934105.6134252.5733607.1333699.88352340883.0
2023-02-0834132.9034161.6533899.7933949.01331798754.0
2023-02-0733769.7834240.0033634.1034156.69362844008.0
2023-02-0633874.4433962.8433683.5833891.02297051674.0
..................
2018-02-2025124.9125179.0124884.1924964.75421529658.0
2018-02-1625165.9425432.4225149.2625219.38406774321.0
2018-02-1525047.8225203.9524809.4225200.37416778260.0
2018-02-1424535.8224925.9524490.3624893.49431152512.0
2018-02-1324540.3324705.7224421.0324640.45374415694.0

1258 rows × 5 columns

import matplotlib.pyplot as plt
plt.plot(dji['Close'])
plt.show()

import torch
from torch.utils.data import DataLoader, TensorDataset

num = len(dji)                           # 总数据量
x = torch.tensor(dji['Close'].to_list())  # 股价列表

x = (x - torch.mean(x)) / torch.std(x)  #数据归一化

seq_len = 16                               # 预测序列长度
batch_size = 16                            # 设置批大小

X_feature = torch.zeros((num - seq_len, seq_len))      # 构建特征矩阵,num-seq_len行,seq_len列,初始值均为0
Y_label = torch.zeros((num - seq_len, seq_len))        # 构建标签矩阵,形状同特征矩阵
for i in range(seq_len):
    X_feature[:, i] = x[i: num - seq_len + i]    # 为特征矩阵赋值
    Y_label[:, i] = x[i+1: num - seq_len + i + 1]    # 为标签矩阵赋值

train_loader = DataLoader(TensorDataset(
    X_feature[:num-seq_len].unsqueeze(2), Y_label[:num-seq_len]),
    batch_size=batch_size, shuffle=True)  # 构建数据加载器
# 定义超参数
input_size = 1
output_size = 1
num_hiddens = 64
n_layers = 2
lr = 0.001


# 建立模型
model = DRNN(input_size, output_size, num_hiddens, n_layers)
criterion = nn.MSELoss(reduction='none')
trainer = torch.optim.Adam(model.parameters(), lr)
# 训练轮次
num_epochs = 20
rnn_loss_history = []

for epoch in tqdm(range(num_epochs)):
    # 批量训练
    for X, Y in train_loader:
        trainer.zero_grad()
        y_pred = model(X)
        loss = criterion(y_pred.squeeze(), Y.squeeze())
        loss.sum().backward()
        trainer.step()
     # 输出损失
    model.eval()
    with torch.no_grad():
        total_loss = 0
        for X, Y in train_loader:
            y_pred = model(X)
            loss = criterion(y_pred.squeeze(), Y.squeeze())
            total_loss += loss.sum()/loss.numel()
        avg_loss = total_loss / len(train_loader)
        print(f'Epoch {epoch+1}: Validation loss = {avg_loss:.4f}')
        rnn_loss_history.append(avg_loss)
    
# 绘制损失曲线图
import matplotlib.pyplot as plt
# plt.plot(loss_history, label='loss')
plt.plot(rnn_loss_history, label='RNN_loss')
plt.legend()
plt.show()
  5%|▌         | 1/20 [00:00<00:08,  2.30it/s]Epoch 1: Validation loss = 0.0180

 10%|█         | 2/20 [00:00<00:07,  2.29it/s]Epoch 2: Validation loss = 0.0083

 15%|█▌        | 3/20 [00:01<00:07,  2.29it/s]Epoch 3: Validation loss = 0.0081

 20%|██        | 4/20 [00:01<00:06,  2.29it/s]Epoch 4: Validation loss = 0.0079

 25%|██▌       | 5/20 [00:02<00:06,  2.29it/s]Epoch 5: Validation loss = 0.0078

 30%|███       | 6/20 [00:02<00:06,  2.28it/s]Epoch 6: Validation loss = 0.0077

 35%|███▌      | 7/20 [00:03<00:05,  2.27it/s]Epoch 7: Validation loss = 0.0081

 40%|████      | 8/20 [00:03<00:05,  2.28it/s]Epoch 8: Validation loss = 0.0080

 45%|████▌     | 9/20 [00:03<00:04,  2.28it/s]Epoch 9: Validation loss = 0.0078

 50%|█████     | 10/20 [00:04<00:04,  2.25it/s]Epoch 10: Validation loss = 0.0080

 55%|█████▌    | 11/20 [00:04<00:03,  2.25it/s]Epoch 11: Validation loss = 0.0079

 60%|██████    | 12/20 [00:05<00:03,  2.25it/s]Epoch 12: Validation loss = 0.0079

 65%|██████▌   | 13/20 [00:05<00:03,  2.27it/s]Epoch 13: Validation loss = 0.0077

 70%|███████   | 14/20 [00:06<00:02,  2.25it/s]Epoch 14: Validation loss = 0.0082

 75%|███████▌  | 15/20 [00:06<00:02,  2.26it/s]Epoch 15: Validation loss = 0.0080

 80%|████████  | 16/20 [00:07<00:01,  2.25it/s]Epoch 16: Validation loss = 0.0077

 85%|████████▌ | 17/20 [00:07<00:01,  2.26it/s]Epoch 17: Validation loss = 0.0078

 90%|█████████ | 18/20 [00:07<00:00,  2.28it/s]Epoch 18: Validation loss = 0.0076

 95%|█████████▌| 19/20 [00:08<00:00,  2.28it/s]Epoch 19: Validation loss = 0.0076
100%|██████████| 20/20 [00:08<00:00,  2.27it/s]Epoch 20: Validation loss = 0.0076

rnn_preds = model(X_feature.unsqueeze(2))
rnn_preds.squeeze()
time = torch.arange(1, num+1, dtype= torch.float32)  # 时间轴

plt.plot(time[:num-seq_len], x[seq_len:num], label='dji')
# plt.plot(time[:num-seq_len], preds.detach().numpy(), label='preds')
plt.plot(time[:num-seq_len], rnn_preds[:,seq_len-1].detach(), label='RNN_preds')
plt.legend()
plt.show()

5.3 效果对比

# 定义超参数
input_size = 1
output_size = 1
num_hiddens = 64
n_layers = 2
lr = 0.001


# 建立模型
model_name = ['DRNN', 'BRNN', 'LSTM', 'GRU']
drnn = DRNN(input_size, output_size, num_hiddens, n_layers)
brnn = BRNN(input_size, output_size, num_hiddens, n_layers)
lstm = LSTM(input_size, output_size, num_hiddens, n_layers)
gru = GRU(input_size, output_size, num_hiddens, n_layers)
models = [drnn, brnn, lstm, gru]

opts = [torch.optim.Adam(drnn.parameters(), lr), 
            torch.optim.Adam(brnn.parameters(), lr), 
            torch.optim.Adam(lstm.parameters(), lr), 
            torch.optim.Adam(gru.parameters(), lr)]
criterion = nn.MSELoss(reduction='none')

num_epochs = 20
rnn_loss_history = []
lr = 0.1
for epoch in tqdm(range(num_epochs)):
    # 批量训练
    for X, Y in train_loader:
        for index, model, optimizer in zip(range(len(models)), models, opts):
            y_pred = model(X)
            loss = criterion(y_pred.squeeze(), Y.squeeze())
            trainer.zero_grad()
            loss.sum().backward()
            trainer.step()
100%|██████████| 20/20 [00:59<00:00,  2.95s/it]
for i in range(4):
    rnn_preds = models[i](X_feature.unsqueeze(2))
    bias = torch.sum(x[seq_len:num] - rnn_preds[:,seq_len-1].detach().numpy())
    print ('{} bias : {}'.format(model_name[i],str(bias)))
DRNN bias : tensor(125995.9453)
BRNN bias : tensor(-24902.6758)
LSTM bias : tensor(130150.6797)
GRU bias : tensor(102981.3438)

参考来源

Chapter-10/10.5 复杂循环神经网络代码实现.ipynb · 梗直哥/Deep-Learning-Code - Gitee.com

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1339726.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

虚函数的讲解

文章目录 虚函数的声明与定义代码演示基类Person派生类Man派生类Woman 测试代码动态绑定静态绑定访问私有虚函数总结一下通过成员函数指针调用函数的方式 虚函数的声明与定义 虚函数存在于C的类、结构体等中&#xff0c;不能存在于全局函数中&#xff0c;只能作为成员函数存在…

❀My小学习之排序算法❀

目录 排序算法&#xff08;Sorting algorithm&#xff09;:) 一、定义 二、分类 三、评价标准 排序算法&#xff08;Sorting algorithm&#xff09;:) 一、定义 所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的…

【网络技术】【Kali Linux】Wireshark嗅探(一)ping和ICMP

一、实验目的 本次实验使用wireshark流量分析工具进行网络嗅探&#xff0c;旨在了解ping命令的原理及过程。 二、网络环境设置 本系列实验均使用虚拟机完成&#xff0c;主机操作系统为Windows 11&#xff0c;虚拟化平台选择Oracle VM VirtualBox&#xff0c;组网模式选择“N…

c语言的数组

#在这一篇中介绍三个数组 1.一维数组 2.字符数组 3.二维数组 1.一维数组 数组的定义&#xff1a; 类型 数组名[元素个数] ----这个为数组的定义 #include <stdio.h> int main() {int a[4];//在这里&#xff0c;我定义了一个只能装载4个整数类型元素的数组char b[5…

WPF+Halcon 培训项目实战(1-5):Halcon安装,图像处理,Halcon简单模板匹配

文章目录 前言相关链接项目专栏我个人对就业市场的评价Halcon安装实战1-4&#xff1a;Halcon基础实战5&#xff1a;模板匹配[形状匹配]实战代码 结尾 前言 为了更好地去学习WPFHalcon&#xff0c;我决定去报个班学一下。原因无非是想换个工作。相关的教学视频来源于下方的Up主…

IDEA 开发中常用的快捷键

目录 Ctrl 的快捷键 Alt 的快捷键 Shift 的快捷键 Ctrl Alt 的快捷键 Ctrl Shift 的快捷键 其他的快捷键 Ctrl 的快捷键 Ctrl F 在当前文件进行文本查找 &#xff08;必备&#xff09; Ctrl R 在当前文件进行文本替换 &#xff08;必备&#xff09; Ctrl Z 撤…

excel 函数技巧

1&#xff1a;模糊查询 LOOKUP(1,0/FIND(F1062,Sheet1!C$2:Sheet1!C$9135),Sheet1!B$2:Sheet1!B$9135) 函数含义&#xff1a;寻找F列1062行和sheet1中的C2行到C9135行进行模糊查询&#xff0c;返回该行对应的B2行到B9135行的结果。未查到返回结果0 函数公式&#xff1a; LO…

基于Mbed Studio环境下开发STM32

基于Mbed Studio环境下开发STM32 &#x1f4cd;Mbed官网&#xff1a;https://os.mbed.com/ ✨mbed OS是ARM出的一个免费开源的&#xff0c;面向物联网的操作系统。提供了一个定义良好的API来开发C应用程序&#xff1b;集成度很高&#xff0c;类似Arduino&#xff0c;目前并不兼…

Flink on K8S生产集群使用StreamPark管理

&#xff08;一&#xff09;直接部署&#xff08;手动测试用&#xff0c;不推荐&#xff09; Flink on Native Kubernetes 目前支持 Application 模式和 Session 模式&#xff0c;两者对比 Application 模式部署规避了 Session 模式的资源隔离问题、以及客户端资源消耗问题&am…

Linux操作系统基础:从入门到实践

目录 学习目标&#xff1a; 学习内容&#xff1a; 学习时间&#xff1a; 学习产出&#xff1a; Linux操作系统概述 Linux操作系统的定义和主要特点 Linux操作系统与其他操作系统的比较 Linux操作系统在不同领域的应用案例 Linux操作系统的历史 Linux操作系统的起源和发展过程 L…

浅谈WPF之ToolTip工具提示

在日常应用中&#xff0c;当鼠标放置在某些控件上时&#xff0c;都会有相应的信息提示&#xff0c;从软件易用性上来说&#xff0c;这是一个非常友好的功能设计。那在WPF中&#xff0c;如何进行控件信息提示呢&#xff1f;这就是本文需要介绍的ToolTip【工具提示】内容&#xf…

生产系统稳定上线600天!中国联通CUDB for OceanBase的开源共建和规模化应用

中国联通软件研究院架构部平台承载了上千应用的数据库需求&#xff0c;并且现存大量数据库使用过程缺少规范、缺少监控&#xff0c;同时还存在着数据库核心技术相关风险。为了实现核心技术自主可控&#xff0c;及时为用户解决线上问题、满足用户的功能需求&#xff0c;提供物美…

procise纯PL流程点灯记录

procise纯PL流程点灯记录 一、概述 此篇记录使用procise工具构造JFMQL15T 纯PL工程&#xff0c;显示PL_LED闪烁&#xff1b; 硬件说明如下&#xff1a; 时钟引脚 Pl_CLK: U2 ,IO_L14P_T2_SRCC_34 PL_LED1 : E2, IO_L17P_T2_AD5P_35 PL_LED2: D6, IO_L2N_T0_AD8N_35 PL_LED3 :…

C++11 lambda函数和包装器

目录 前言 一.lambda的引入 二、lambda函数的使用 1.一般使用 2.引用 三、包装器 1.包装普通对象 2.包装类成员对象 3.bind 前言 学习过python的同学应该对lambda函数不陌生&#xff0c;这是一个匿名函数&#xff0c;不需要写函数的名字。在不会多地方调用某个简单函数…

C# vs报错 id为XX的进程当前未运行

报错原因&#xff1a;虚拟目录端口被占用 解决方法&#xff1a;重新配置新的目录端口就行 1、选择项目属性 2、更改端口号&#xff0c;点击创建虚拟目录 3、重新生成项目

C# WPF上位机开发(MVVM模式开发)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 学习过vue的同学都知道mvvm这个名词。从字面上理解&#xff0c;可能有点拗口&#xff0c;但是我们可以去理解一下它的优点是什么。mvc相信大家都明…

InDesign插件-常规功能开发-添加参考线-js脚本开发-ID插件

文章目录 1.脚本执行概述2.InDesign 对象模型3.源码解析4.界面及结果5.总结 1.脚本执行概述 “脚本”面板和“脚本标签”面板概述&#xff0c;InDesign 包含两个用于脚本的面板&#xff1a;“脚本”面板和“脚本标签”面板。在“脚本”面板中可以运行脚本而不必离开 InDesign。…

Python sanic框架钉钉和第三方打卡机实现

同样还是需要开通钉钉应用这里就不错多说了 第一步:梳理逻辑流程 前提&#xff1a;打卡的机器是使用postgres数据库&#xff0c;由于因为某些原因&#xff0c;钉钉userId 我已经提前获取到了存放到数据库里。 1.用户打卡成功后&#xff0c;我们应该监听数据库进行查询&#xf…

【教学类-35-07】17号的字帖(三)年份字帖“2023”(A4竖版1份)

作品展示 前四行是一个数字的描写 后四行是合并的年份4个数字 背景需求&#xff1a; 大4班17号孩子练习数字书写&#xff0c;上一次是“17”号和大“4”&#xff0c;第3份就是年份 【教学类-35-05】17号的学号字帖&#xff08;A4竖版1份&#xff09;-CSDN博客文章浏览阅读4…

数据结构--查找

目录 1. 查找的基本概念 2. 线性表的查找 3. 树表的查找 3.1 二叉排序树 3.1.1 定义: 3.1.2 存储结构&#xff1a; 3.1.3 二叉排序树的查找 3.1.4 二叉排序树的插入 3.1.5 二叉排序树删除 3.2 平衡二叉树&#xff08;AVL 3.2.1 为什么要有平衡二叉树 3.2.2 定义 3.3 B-树 3.3.1…