STM32独立看门狗

news2025/6/24 6:12:01

时钟频率

40KHZ

看门狗简介

STM32F10xxx 内置两个看门狗,提供了更高的安全性、时间的精确性和使用的灵活性。两个看
门狗设备 ( 独立看门狗和窗口看门狗 ) 可用来检测和解决由软件错误引起的故障;当计数器达到给
定的超时值时,触发一个中断 ( 仅适用于窗口型看门狗 ) 或产生系统复位。
独立看门狗 (IWDG) 由专用的 40kHz 的低速时钟驱动,即使主时钟发生故障它也仍然有效。窗口
看门狗由从 APB1 时钟分频后得到的时钟驱动,通过可配置的时间窗口来检测应用程序非正常的
过迟或过早的操作。
IWDG 最适合应用于那些需要看门狗作为一个在主程序之外,能够完全独立工作,并且对时间精
度要求较低的场合。 WWDG 最适合那些要求看门狗在精确计时窗口起作用的应用程序。

IWDG主要性能

● 自由运行的递减计数器
● 时钟由独立的 RC 振荡器提供 ( 可在停止和待机模式下工作 )
● 看门狗被激活后,则在计数器计数至 0x000 时产生复位

IWDG功能描述

在键寄存器 (IWDG_KR) 中写入 0xCCCC ,开始启用独立看门狗;此时计数器开始从其复位值
0xFFF 递减计数。当计数器计数到末尾 0x000 时,会产生一个复位信号 (IWDG_RESET)
无论何时,只要键寄存器 IWDG_KR 中被写入 0xAAAA IWDG_RLR 中的值就会被重新加载到
计数器中从而避免产生看门狗复位 。

键寄存器(IWDG_KR)

预分频寄存器(IWDG_PR)

重装载寄存器(IWDG_RLR)

IWDG库函数

看门狗蜂鸣器

main.c


/*看门狗*/
#include"iwdg.h"
#include"led.h"
#include"fmq.h"
#include"key.h"
#include"delay.h"

int main(void)
{
	int i=0,j=0;
	Led_Init();	
	Key_Init();
	Fmq_Init();
	delay_init();
	iwdg_init(5);
	Fmq_On();
	delay_ms(2000);
	Fmq_Off();
	for(i=0;i<3;i=(i+1)%3)
	{
		iwdg_fee_dog();
		Led_On(i);
		delay_ms(500);
		Led_Off(i);
		delay_ms(500);
	}
	return 0;
}





iwdg.h

#ifndef _IWDG_H
#define _IWDG_H
#include "stm32f10x_conf.h"
extern void iwdg_init(int nu);
extern void iwdg_fee_dog(void);
#endif

iwdg.c

#include"iwdg.h"

void iwdg_init(int nu) 
{
    IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable); //关闭寄存器写保护 
    IWDG_SetPrescaler(IWDG_Prescaler_64); //625设置预分频值
    IWDG_SetReload(nu*625); //设置重装载值
    IWDG_ReloadCounter(); //重载计数值喂狗
    IWDG_Enable(); //启动关门狗
}

void iwdg_fee_dog(void)
{ 
    IWDG_ReloadCounter();//喂狗
}

delay.c

#include "delay.h"

//利用系统滴答定时,编写的延时函数

static u8  fac_us=0; //us延时倍乘数			   
static u16 fac_ms=0; //ms延时倍乘数

/****************************************************************************
* 名    称: delay_init()
* 功    能:延时函数初始化
* 入口参数:无
* 返回参数:无
* 说    明:
****************************************************************************/
void delay_init(void)
{
 	SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8);
	//为系统定时器选择时钟为	HCLK 8分频	72MHz / 8 = 9MHz
	fac_us = SYSCLK / 8;
	//微秒的倍乘数 = 72 / 8 = 9
	//X * fac_us就相当于有X个微妙
	fac_ms = (u16)fac_us * 1000; 
	//每个ms需要的systick时钟数(1ms = 1000us),所以fac_us*1000
	//X * fac_ms就相当于有X个毫妙
}								    

/****************************************************************************
* 名    称: void delay_us(u32 nus)
* 功    能:延时nus
* 入口参数:要延时的微秒数
* 返回参数:无
* 说    明:nus的值,不要大于1864135us
****************************************************************************/
/*
通过相关手册我们了解到,备份值寄存器和当前值寄存器的值最大为16M - 1
我们的微秒级的延时函数的倍乘数为9所以16M - 1 / 9 = 1864135
*/
void delay_us(u32 nus)
{
	u32 midtime;																			//保存寄存器的状态
	SysTick->LOAD = nus * fac_us;											//时间加载(相当于有nus个微妙)
	SysTick->VAL = 0x00;															//清空计数器
	SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk;					//使能系统定时器计数
	do
	{
		midtime = SysTick->CTRL;
	}
	while((midtime & 0x01) && !(midtime & (1 << 16)));//等待时间到达
	SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk;				//关闭计数器
	SysTick->VAL = 0X00;															//清空计数器	 
}
/****************************************************************************
* 名    称: void delay_xms(u16 nms)
* 功    能:延时nms
* 入口参数:要延时的毫妙数
* 返回参数:无
* 说    明:SysTick->LOAD为24位寄存器,所以,最大延时为: nms<=0xffffff*8*1000/SYSCLK
            对9M条件下,nms<=1864ms 
****************************************************************************/
void delay_xms(u16 nms)
{	 		  	  
	u32 midtime;		   
	SysTick->LOAD = (u32)nms*fac_ms;									//时间加载(SysTick->LOAD为24bit)
	SysTick->VAL = 0x00;															//清空计数器
	SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk;					//开始倒数
	do
	{
		midtime = SysTick->CTRL;
	}
	while((midtime & 0x01) && !(midtime & (1 << 16)));//等待时间到达
	SysTick->CTRL &= ~SysTick_CTRL_ENABLE_Msk;				//关闭计数器
	SysTick->VAL = 0X00;															//清空计数器
} 
/****************************************************************************
* 名    称: void delay_ms(u16 nms)
* 功    能:延时nms
* 入口参数:要延时的毫妙数
* 返回参数:无
* 说    明:nms:0~65535
****************************************************************************/
void delay_ms(u16 nms)
{	 	 
	u8 repeat = nms / 540;	//记录有多少个整的540ms
	u16 remain = nms % 540;	//记录有多少个不够540ms
	while(repeat)
	{
		delay_xms(540);
		repeat--;
	}
	if(remain)delay_xms(remain);
} 


delay.h

#ifndef __DELAY_H
#define __DELAY_H

#include "stm32f10x_conf.h" 

#define SYSCLK 72				//系统时钟的基数(注:是72而不是72M)

typedef uint32_t  u32;
typedef uint16_t  u16;
typedef uint8_t   u8;
	
void delay_init(void);	//延时函数的初始化
void delay_ms(u16 nms);	//毫秒级的延时函数(参数为毫秒数)
void delay_us(u32 nus);	//微秒级的延时函数(参数为微秒数)

#endif
















fmq.h

#ifndef __FMQ_H
#define __FMQ_H
#include "stm32f10x_conf.h"
extern void Fmq_Init(void);//初始化FMQ
extern void Fmq_On(void);//蜂鸣器响
extern void Fmq_Off(void);//蜂鸣器不响
#endif 

fmq.c

#include"key.h"
void Key_Init(void)
{
	GPIO_InitTypeDef GPIO_VALUE; 
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC|RCC_APB2Periph_GPIOA,ENABLE);
	GPIO_VALUE.GPIO_Mode=GPIO_Mode_IPU;
	GPIO_VALUE.GPIO_Pin=GPIO_Pin_9|GPIO_Pin_8;
	GPIO_Init(GPIOC,&GPIO_VALUE);	
	
	GPIO_VALUE.GPIO_Mode=GPIO_Mode_IPD;
	GPIO_VALUE.GPIO_Pin=GPIO_Pin_0;
	GPIO_Init(GPIOC,&GPIO_VALUE);	
}
int Key_status(int nu)
{
	int ret=0;
	switch(nu)
	{
		case 0:ret=GPIO_ReadInputDataBit(GPIOC,GPIO_Pin_9);break;
		case 1:ret=GPIO_ReadInputDataBit(GPIOC,GPIO_Pin_8);break;
		case 2:ret=GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0);ret=!ret;break;
	}
	return !ret;
	
}

led.h

#ifndef __LED_H
#define __LED_H
#include "stm32f10x_conf.h"

extern void Led_Init(void);
extern void Led_On(int opt);
extern void Led_Off(int opt);
#endif 

led.c


#include"led.h"

void Led_Init(void)
{
	GPIO_InitTypeDef GPIO_VALUE; //???
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE);//???
	GPIO_VALUE.GPIO_Mode=GPIO_Mode_Out_PP;//???? ????
	GPIO_VALUE.GPIO_Pin=GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3;//????
	GPIO_VALUE.GPIO_Speed=GPIO_Speed_50MHz;//????
	GPIO_Init(GPIOC,&GPIO_VALUE);//???	
}
void Led_On(int nu)
{
	switch(nu)
	{
		case 0:GPIO_SetBits(GPIOC,GPIO_Pin_1);break;
		case 1:GPIO_SetBits(GPIOC,GPIO_Pin_2);break;
		case 2:GPIO_SetBits(GPIOC,GPIO_Pin_3);break;
	}
		
}
void Led_Off(int nu)
{
	switch(nu)
	{
		case 0:GPIO_ResetBits(GPIOC,GPIO_Pin_1);break;
		case 1:GPIO_ResetBits(GPIOC,GPIO_Pin_2);break;
		case 2:GPIO_ResetBits(GPIOC,GPIO_Pin_3);break;
	}	
}










/*
#include"led.h"
#include"bitband.h"
void Led_Init(void)
{
	GPIO_InitTypeDef GPIO_VALUE; //???
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE);//???
	GPIO_VALUE.GPIO_Mode=GPIO_Mode_Out_PP;//???? ????
	GPIO_VALUE.GPIO_Pin=GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3;//????
	GPIO_VALUE.GPIO_Speed=GPIO_Speed_50MHz;//????
	GPIO_Init(GPIOC,&GPIO_VALUE);//???	
}
void Led_On(int nu)
{
	switch(nu)
	{
		case 0:PCOut(1)=1;break;
		case 1:PCOut(2)=1;break;
		case 2:PCOut(3)=1;break;
	}
		
}
void Led_Off(int nu)
{
	switch(nu)
	{
		case 0:PCOut(1)=0;break;
		case 1:PCOut(2)=0;break;
		case 2:PCOut(3)=0;break;
	}	
}
*/

main.c


/*看门狗*/
#include"iwdg.h"
#include"led.h"
#include"fmq.h"
#include"key.h"
#include"delay.h"

int main(void)
{
	int i=0,j=0;
	Led_Init();	
	Key_Init();
	Fmq_Init();
	delay_init();
	iwdg_init(5);
	Fmq_On();
	delay_ms(2000);
	Fmq_Off();
	for(i=0;i<3;i=(i+1)%3)
	{
		iwdg_fee_dog();
		Led_On(i);
		delay_ms(500);
		Led_Off(i);
		delay_ms(500);
	}
	return 0;
}





看门狗过程

 1)取消寄存器写保护(向 IWDG_KR 写入 0X5555)

通过这步,我们取消 IWDG_PR 和 IWDG_RLR 的写保护,使后面可以操作这两个寄存器,设置 IWDG_PR 和 IWDG_RLR 的值。这在库函数中的实现函数是:

IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);
这个函数的功能开启/取消写保护,即使能/失能写权限。

        2)设置独立看门狗的预分频系数和重装载值

        设置看门狗的分频系数的函数是:

void IWDG_SetPrescaler(uint8_t IWDG_Prescaler); //设置 IWDG 预分频值
        设置看门狗的重装载值的函数是:

        

void IWDG_SetReload(uint16_t Reload); //设置 IWDG 重装载值
        设置好看门狗的分频系数 prer 和重装载值就可以知道看门狗的喂狗时间(也就是看门狗溢出时间),该时间的计算方式为:

                                                        Tout=((4×2^prer) ×rlr) /40

        其中 Tout 为看门狗溢出时间(单位为 ms);prer 为看门狗时钟预分频值(IWDG_PR 值),范围为 0~7;rlr 为看门狗的重装载值(IWDG_RLR 的值);

        比如我们设定 prer 值为 4,rlr 值为 625,那么就可以得到 Tout=64×625/40=1000ms,这样,看门狗的溢出时间就是 1s,只要你在一秒钟之内,有一次写入 0XAAAA 到 IWDG_KR,就不会导致看门狗复位(当然写入多次也是可以的)。这里需要提醒大家的是,看门狗的时钟不是准确的 40Khz,所以在喂狗的时候,最好不要太晚了,否则,有可能发生看门狗复位。

        3)重载计数值喂狗(向 IWDG_KR 写入 0XAAAA)

        库函数里面重载计数值的函数是:

IWDG_ReloadCounter(); //按照 IWDG 重装载寄存器的值重装载 IWDG 计数器
        通过这句,将使 STM32 重新加载 IWDG_RLR 的值到看门狗计数器里面。即实现独立看门狗的喂狗操作。

        4) 启动看门狗(向IWDG_KR 写入 0XCCCC)

        库函数里面启动独立看门狗的函数是:

IWDG_Enable(); //使能 IWDG
        通过这句,来启动 STM32 的看门狗。

        注意 IWDG 在一旦启用,就不能再被关闭!想要关闭,只能重启,并且重启之后不能打开 IWDG,否则问题依旧,如果不用 IWDG 的话,就不要去打开它,免得麻烦。
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1336174.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MyBatis中select语句中使用String[]数组作为参数

&#x1f607;作者介绍&#xff1a;一个有梦想、有理想、有目标的&#xff0c;且渴望能够学有所成的追梦人。 &#x1f386;学习格言&#xff1a;不读书的人,思想就会停止。——狄德罗 ⛪️个人主页&#xff1a;进入博主主页 &#x1f5fc;专栏系列&#xff1a;无 &#x1f33c…

CMakeLists.txt

源码结构 生成可执行程序 # CMake最小版本号 cmake_minimum_required(VERSION 3.15.0)#增加-stdc11 set(CMAKE_CXX_STANDARD 11)#设置工程名称 project(calculate)#[[ #方法一&#xff1a;添加源码文件 #aux_source_directory(< dir > < variable >) #dir&#xf…

Netty组件基础

Netty入门简介 netty是一个异步、基于事件驱动的网络应用框架&#xff0c;用于快速开发可维护、高性能的网络服务器和客户端。 Netty优势 Netty解决了TCP传输问题&#xff0c;如黏包、半包问题&#xff0c;解决了epoll空轮询导致CPU100%的问题。并且Netty对API进行增强&#xf…

Github 2023-12-26开源项目日报 Top10

根据Github Trendings的统计&#xff0c;今日(2023-12-26统计)共有10个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量Python项目7非开发语言项目1JavaScript项目1TypeScript项目1 GPT PILOT: 从头开始编写可扩展的应用程序的开发…

MVC下的四种验证编程方式

ASP.NET MVC采用Model绑定为目标Action生成了相应的参数列表&#xff0c;但是在真正执行目标Action方法之前&#xff0c;还需要对绑定的参数实施验证以确保其有效性&#xff0c;我们将针对参数的验证成为Model绑定。总地来说&#xff0c;我们可以采用4种不同的编程模式来进行针…

北亚服务器数据恢复-服务器断电导致raid5故障的数据恢复案例

服务器数据恢复环境&#xff1a; 服务器有一组由12块硬盘组建的raid5阵列。 服务器故障&分析&#xff1a; 机房供电不稳导致服务器意外断电&#xff0c;工作人员重启服务器后发现服务器无法正常使用。 根据故障情况&#xff0c;北亚企安数据恢复工程师初步判断服务器故障原…

【深度学习目标检测】十一、基于深度学习的电网绝缘子缺陷识别(python,目标检测,yolov8)

YOLOv8是一种物体检测算法&#xff0c;是YOLO系列算法的最新版本。 YOLO&#xff08;You Only Look Once&#xff09;是一种实时物体检测算法&#xff0c;其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化&#xff0c;提高了检测速度和准确性。…

408计算机网络错题知识点拾遗

个人向错题相关部分整理&#xff0c;涵盖真题、模拟、课后习题等。 408相关&#xff1a; 408数据结构错题知识点拾遗 408计算机网络错题知识点拾遗 计网复习资料下载整合 已进行资源绑定&#xff0c;相关计网复习资料上方下载。 第一章 计算机网络体系结构 第二章 物理层 第三…

H.266/VVC 关键帧内预测技术

在 VVC 中&#xff0c;帧内预测过程分为三个步骤&#xff1a;首先&#xff0c;从当前 CU 左侧和上方相 邻块获取参考像素&#xff0c;并对获取的参考像素值进行平滑滤波。其次&#xff0c;基于参考像素 预测得到当前 CU 像素值。最后为了提高预测像素值的精度&#xff0c;平滑滤…

【数据库系统概论】第3章-关系数据库标准语言SQL(3)

文章目录 3.5 数据更新3.5.1 插入数据3.5.2 修改数据3.5.3 删除数据 3.6 空值的处理3.7 视图3.7.1 建立视图3.7.2 查询视图3.7.3 更新视图3.7.4 视图的作用 3.5 数据更新 3.5.1 插入数据 注意&#xff1a;插入数据时要满足表或者列的约束条件&#xff0c;否则插入失败&#x…

类加载器及其类加载子系统

类加载器子系统作用 类加载器子系统的作用是负责将字节码文件加载到内存中&#xff0c;并将其转化为能够被虚拟机直接使用的形式。它是Java虚拟机的一部分&#xff0c;具体作用如下&#xff1a; 加载 类加载器负责将类的字节码文件加载到虚拟机的方法区中&#xff0c;以便…

通过自然语言处理增强推荐系统:协同方法

一、介绍 自然语言处理 (NLP) 是人工智能的一个分支&#xff0c;专注于使机器能够以有意义且有用的方式理解、解释和响应人类语言。它包含一系列技术&#xff0c;包括情感分析、语言翻译和聊天机器人。 另一方面&#xff0c;推荐系统&#xff08;RecSys&#xff09;是旨在向用户…

elasticsearch 笔记二:搜索DSL 语法(搜索API、Query DSL)

文章目录 一、搜索 API1. 搜索 API 端点地址2. URI Search3. 查询结果说明5. 特殊的查询参数用法6. Request body Search6.1 query 元素定义查询6.2 指定返回哪些内容**6.2.1 source filter 对_source 字段进行选择****6.2.2 stored_fields 来指定返回哪些 stored 字段****6.2.…

【Azure 架构师学习笔记】- Power Platform(1) - 简介

本文属于【Azure 架构师学习笔记】系列。 本文属于【Power Platform】系列。 Power Platform 它是一个SaaS平台&#xff0c;支持和延伸M365&#xff0c; Dynamics 365和Azure甚至其他第三方服务。主要提供低代码&#xff0c;自动化&#xff0c;数据驱动和定制化业务逻辑的服务…

PSINS四元数转换函数rv2q

pins中的关于四元数转换 cquat rv2q(const cvect3* rv) 函数 代码对应的公式&#xff0c;第一个 第二个 其他 理解公式&#xff1a; 四元数的表示&#xff0c;与三角函数之间的关系 &#xff0c;矢量&#xff08;x,,y&#xff0c;z&#xff09; 旋转角度为a&#xff0c; 矢量变…

c# OpenCvSharp 检测(斑点检测、边缘检测、轮廓检测)(五)

在C#中使用OpenCV进行图像处理时&#xff0c;可以使用不同的算法和函数来实现斑点检测、边缘检测和轮廓检测。 斑点检测边缘检测轮廓检测 一、斑点检测&#xff08;Blob&#xff09; 斑点检测是指在图像中找到明亮或暗的小区域&#xff08;通常表示为斑点&#xff09;&#…

数据结构之<堆>的介绍

1.简介 堆是一种特殊的数据结构&#xff0c;通常用于实现优先队列。堆是一个可以被看作近似完全二叉树的结构&#xff0c;并且具有一些特殊的性质&#xff0c;根据这些性质&#xff0c;堆被分为最大堆&#xff08;或者大根堆&#xff0c;大顶堆&#xff09;和最小堆两种。 2.…

Ps:制作“小行星”效果

在 Photoshop 中&#xff0c;制作 360 度全景效果或类似“小行星”效果主要就是使用“极坐标”滤镜。 不过&#xff0c;为了获得更好的效果&#xff0c;常常还需要做一些额外的处理和修饰。 原图&#xff08;来自网络&#xff09; 效果图 ◆ ◆ ◆ 一般步骤及说明 1、打开图像…

什么是OAuth2.0

前言 OAuth&#xff08;Open Authorization&#xff09;是一个关于授权&#xff08;authorization&#xff09;的开放网络标准&#xff0c;允许用户授权第三方应用访问他们存储在另外的服务提供者上的信息&#xff0c;而不需要将用户名和密码提供给第三方移动应用或分享他们数…

【华为机试】2023年真题B卷(python)-分糖果

一、题目 题目描述&#xff1a; 小明从糖果盒中随意抓一把糖果&#xff0c;每次小明会取出一半的糖果分给同学们。 当糖果不能平均分配时&#xff0c;小明可以选择从糖果盒中&#xff08;假设盒中糖果足够&#xff09;取出一个糖果或放回一个糖果。 小明最少需要多少次&#xf…