【四】【C语言\动态规划】地下城游戏、按摩师、打家劫舍 II,三道题目深度解析

news2025/5/22 14:20:44

动态规划

动态规划就像是解决问题的一种策略,它可以帮助我们更高效地找到问题的解决方案。这个策略的核心思想就是将问题分解为一系列的小问题,并将每个小问题的解保存起来。这样,当我们需要解决原始问题的时候,我们就可以直接利用已经计算好的小问题的解,而不需要重复计算。

动态规划与数学归纳法思想上十分相似。

数学归纳法:

  1. 基础步骤(base case):首先证明命题在最小的基础情况下成立。通常这是一个较简单的情况,可以直接验证命题是否成立。

  2. 归纳步骤(inductive step):假设命题在某个情况下成立,然后证明在下一个情况下也成立。这个证明可以通过推理推断出结论或使用一些已知的规律来得到。

通过反复迭代归纳步骤,我们可以推导出命题在所有情况下成立的结论。

动态规划:

  1. 状态表示:

  2. 状态转移方程:

  3. 初始化:

  4. 填表顺序:

  5. 返回值:

数学归纳法的基础步骤相当于动态规划中初始化步骤。

数学归纳法的归纳步骤相当于动态规划中推导状态转移方程。

动态规划的思想和数学归纳法思想类似。

在动态规划中,首先得到状态在最小的基础情况下的值,然后通过状态转移方程,得到下一个状态的值,反复迭代,最终得到我们期望的状态下的值。

接下来我们通过三道例题,深入理解动态规划思想,以及实现动态规划的具体步骤。

174. 地下城游戏

题目解析

状态表示

我们可以定义,dp[i][j]表示从(i,j)位置出发,到达右下角所需的最小生命值。

状态的表示通常是经验+题目来得到的。

经验指的是,以某个位置为结尾,或者以某个位置开始。

这道题目我们选择以(i,j)位置开始到达最后的思路定义状态。

故状态表示为,dp[i][j]表示从(i,j)位置出发,到达右下角所需的最小生命值。

为什么选择这一种方式而不选择从(0,0)位置开始到达(i,j)位置所需的最小生命值?

上图所示,如果我们考虑蓝色和绿色两种路径,

绿色路径「从出发点到当前点的路径和」为 1,「从出发点到当前点所需的最小初始值」为 3。

蓝色路径「从出发点到当前点的路径和」为 −1,「从出发点到当前点所需的最小初始值」为 2。

我们希望「从出发点到当前点的路径和」尽可能大,而「从出发点到当前点所需的最小初始值」尽可能小。这两条路径各有优劣。

在上图中,我们知道应该选取绿色路径,因为蓝色路径的路径和太小,使得蓝色路径需要增大初始值到 4 才能走到终点,而绿色路径只要 3 点初始值就可以直接走到终点。但是如果把终点的 −2 换为 0,蓝色路径只需要初始值 2,绿色路径仍然需要初始值 3,最优决策就变成蓝色路径了。

因此,如果按照从左上往右下的顺序进行动态规划,我们无法直接确定到达 (1,2) 的方案,因为有两个重要程度相同的参数同时影响后续的决策。也就是说,这样的动态规划是不满足「无后效性」的。

于是我们考虑从右下往左上进行动态规划。令 dp[i][j] 表示从坐标 (i,j) 到终点所需的最小初始值。换句话说,当我们到达坐标 (i,j)时,如果此时我们的路径和不小于 dp[i][j],我们就能到达终点。

这是leetcode官方题解中的部分解析。

我们可以得出,如果用以某位置为结尾思路定义状态表示,我们没办法依靠前面的状态准确推导出(i,j)位置的状态,而后续的数据依旧会影响(i,j)位置的状态值,所以这种方式是错误的。在运用动态规划时,必须满足【无后效性】,所以我们选择以某位置开始思路定义状态表示。

当我们选择 以某位置开始思路定义状态表示时,我们前面的状态值并不会影响后面的状态值,可以保证满足【无后效性】,所以这种方式是可以行的。

故状态表示为,dp[i][j]表示从(i,j)位置出发,到达右下角所需的最小生命值。

状态转移方程

我们考虑,(i,j)位置的值能不能由其他的状态值推导得出,dp[i+1][j]表示从(i+1,j)位置出发,到达右下角所需的最小生命值。dp[i][j+1]表示从(i,j+1)位置出发,到达右下角所需的最小生命值。对于(i,j)的状态值,分两种情况,(i,j)房间内的值是正数或者是负数。如果(i,j)房间的值是负数,说明我们到达(i,j)时的最小生命值应该是min(dp[i][j+1],dp[i+1][j])-dungeon[i][j]。如果(i,j)房间的值是正数,说明我们到达(i,j)时的最小生命值应该是min(dp[i][j+1],dp[i+1][j])-dungeon[i][j],但是这样写又会有两种情况,那就是减出来的数是大于零的数或者是小于等于零的数,我们到达(i,j)房间时最小生命不可能是小于等于零的数,而减出来的数是小于等于零意义是,(i,j)的血包特别的大,即使你的血是负数,吃完之后都可以到达终点,所以实际上到达该位置的生命值为最低的1就可以。

故状态转移方程为,

dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j]

if(dp[i][j]<=0)dp[i][j]=1

初始化

根据状态转移方程,我们如果要推导出(i,j)位置的状态,就需要运用到(i+1,j)和(i,j+1)位置的状态,所以我们为了不越界,需要初始化最后一行和最后一列的数据。我们发现这种初始化有点复杂,所以我们把对这些位置的初始化转化为对虚拟节点的初始化,也就是创建虚拟节点代替原先初始化的位置。

对于红色位置的状态,他们所需访问的虚拟节点的值,是一定不能取到的,根据状态转移方程,

dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j]

if(dp[i][j]<=0)dp[i][j]=1

所以他们访问的虚拟节点值应该置正无穷,这样取最小就不会取到。

对于紫色位置的状态,他的状态值应该是1-dungeon[i][j]所以min(dp[i+1][j],dp[i][j+1])的值应该为1。所有我们可以先把所有位置置正无穷,然后在这两个位置选一个位置置1就可以了。

填表顺序

从右到左,从下到上

返回值

返回dp[0][0]

代码实现

 
int calculateMinimumHP(int** dungeon, int dungeonSize, int* dungeonColSize) {
    int row=dungeonSize;
    int col=dungeonColSize[0];

    int dp[row+1][col+1];

    for(int i=0;i<=row;i++){
        memset(dp[i],0x3f,sizeof(dp[i]));
    }
    dp[row-1][col]=1;
    

    for(int i=row-1;i>=0;i--){
        for(int j=col-1;j>=0;j--){
            dp[i][j]=fmin(dp[i][j+1],dp[i+1][j])-dungeon[i][j];
            if(dp[i][j]<=0) dp[i][j]=1;
        }
    }

    return dp[0][0];
}
 
    for(int i=0;i<=row;i++){
        memset(dp[i],0x3f,sizeof(dp[i]));
    }

void *memset(void *s, int ch, size_t n);

函数解释:将s中前n个字节 (typedef unsigned int size_t )用 ch 替换并返回 s 。

memset:作用是在一段内存块中填充某个给定的值,它是对较大的结构体数组进行清零操作的一种最快方法。

_itoa可以把x值转化为char类型的2进制数存放在string中。

我们发现x的二进制数是00111111 00111111 00111111 00111111。

用_itoa转换二进制数时,前导零省略了,实际上是00111111 00111111 00111111 00111111。

一个int类型占4个字节。

一个字节占8位二进制数。

而0x3f的二进制数是00111111。

memset的意思是,将x中前n个字节,用0x3f最后一个字节对应的二进制数替换。

那为什么要赋值0x3f:

作为无穷大使用

因为4个字节均为0x3f时,0x3f3f3f3f的十进制是1061109567,也就是10^ 9级别的(和0x7fffffff一个数量级),而一般场合下的数据都是小于10^9的,所以它可以作为无穷大使用而不致出现数据大于无穷大的情形。

可以保证无穷大加无穷大仍然不会超限。

另一方面,由于一般的数据都不会大于10^9,所以当我们把无穷大加上一个数据时,它并不会溢出(这就满足了“无穷大加一个有穷的数依然是无穷大”),事实上0x3f3f3f3f+0x3f3f3f3f=2122219134,这非常大但却没有超过32-bit int的表示范围,所以0x3f3f3f3f还满足了我们“无穷大加无穷大还是无穷大”的需求。

面试题 17.16. 按摩师

题目解析

状态表示

我们可以定义dp[i]表示,从nums[0]开始一直到nums[i],选择不相邻的预约情况中,最长的时间数。

状态转移方程

我们想一想dp[i]能不能由其他的状态推导得出。

dp[i]表示,从nums[0]开始一直到nums[i],选择不相邻的预约情况中,最长的时间数。

dp[i-1]表示,从nums[0]开始一直到nums[i-1],选择不相邻的预约情况中,最长的时间数。

dp[i-2]表示,从nums[0]开始一直到nums[i-2],选择不相邻的预约情况中,最长的时间数。

如果i位置预约我们选择,那么i-1位置预约肯定不选择,这种情况对应的最长时间数就是

dp[i-2]+nums[i]

如果i位置预约我们不选择,这种情况对应的最长时间数就是

dp[i-1]

因为我们存储是最长时间数,所以需要从两种情况中选一个时间更长的。

故状态转移方程为,dp[i]=max(dp[i-2]+nums[i],dp[i-1])

初始化

根据状态转移方程,我们推导出i位置的状态需要用到(i-2)和(i-1)的状态值。

我们想要统一所有需要得到的状态,都通过状态转移方程推导得出,那么我们就需要创建虚拟节点替代需要初始化的位置。

创建虚拟节点有几点注意事项,

第一,对虚拟节点的初始化必须保证后续的推导过程不出错。

第二,注意下标映射关系的变化,也就是状态表示和状态转移方程的下标变换。

状态转移方程为,dp[i]=max(dp[i-2]+nums[i-2],dp[i-1])。

对于紫色第一个状态值,应该是填自己的时间数,所以需要选择dp[i-2]+nums[i-2]且dp[n-2]需要为零,即dp[0]为0。

对于紫色第二个状态值,要么是填自己的值,要么填紫色第一个状态值。

所以dp[i-2]为零,即dp[1]。

故初始化为dp[0]=dp[1]=0。

填表顺序

从左往右

返回值

放回最后一个元素的值,dp[n+1]

n是nums的数组大小

代码实现

 

int massage(int* nums, int numsSize){
    int n=numsSize;
    int dp[n+2];
    memset(dp,0,sizeof(dp));

    for(int i=2;i<=n+1;i++){
        dp[i]=fmax(dp[i-2]+nums[i-2],dp[i-1]);
    }
    return dp[n+1];
}

213. 打家劫舍 II

题目解析

我们可以把问题分成两种情况,要么数组的长度大于1,要么数组的长度等于1。

当数组的长度大于1时,我们有两种情况。

第一,我们考虑第一个房子,不考虑最后一个房子。

第二,我们不考虑第一个房子,考虑最后一个房子。

这样问题就转化为普通的不环绕的问题了。

当数组的长度等于1时,我们只能选择nums[0],这一个房子。

所以我们只需要解决不环绕的问题即可。

状态表示

我们可以定义dp[i]表示从nums[0]开始到nums[i]这些房子,选择不相邻房子方法数中金额最大的金额数。

状态转移方程

我们想一想dp[i]能不能由其他状态推导得出。

dp[i]表示从nums[0]开始到nums[i]这些房子,选择不相邻房子方法数中金额最大的金额数。

dp[i-1]表示从nums[0]开始到nums[i-1]这些房子,选择不相邻房子方法数中金额最大的金额数。

dp[i-2]表示从nums[0]开始到nums[i-2]这些房子,选择不相邻房子方法数中金额最大的金额数。

对dp[i]这个状态进行分析,如果该房子选择的话,i-1房子就不能选择,所以这种情况下金额最大数为dp[i-2]+nums[i]

如果该房子不选择的话,最大金额数就是dp[i-1]

故状态转移方程为,dp[i]=max(dp[i-2]+nums[i],dp[i-1])

初始化

根据状态转移方程,我们推导出i位置的状态需要用到(i-2)和(i-1)的状态值。

我们想要统一所有需要得到的状态,都通过状态转移方程推导得出,那么我们就需要创建虚拟节点替代需要初始化的位置。

创建虚拟节点有几点注意事项,

第一,对虚拟节点的初始化必须保证后续的推导过程不出错。

第二,注意下标映射关系的变化,也就是状态表示和状态转移方程的下标变换。

状态转移方程为,dp[i]=max(dp[i-2]+nums[i-2],dp[i-1])。

对于紫色第一个状态值,应该是填自己的时间数,所以需要选择dp[i-2]+nums[i-2]且dp[n-2]需要为零,即dp[0]为0。

对于紫色第二个状态值,要么是填自己的值,要么填紫色第一个状态值。

所以dp[i-2]为零,即dp[1]。

故初始化为dp[0]=dp[1]=0。

填表顺序

从左往右

返回值

分两种情况,计算当长度大于1时,考虑第一个房子而不考虑最后一个房子的金额数,

和当长度大于1时,不考虑第一个房子而考虑最后一个房子的金额数。

和当长度为1时,nums[0]的金额数

返回三者中最大的金额数即可。

代码实现

 
int rob_(int* nums,int numsSize, int left,int right) {
    int n=numsSize;
    int dp[n+2];
    memset(dp,0,sizeof(dp));

    for(int i=left;i<=right;i++){
        dp[i]=fmax(dp[i-2]+nums[i-2],dp[i-1]);
    }
    return dp[right];
}
int rob(int* nums,int numsSize){
    int num1=rob_(nums,numsSize,2,numsSize);
    int num2=rob_(nums,numsSize,3,numsSize+1);
    return fmax(fmax(num1,num2),nums[0]);
}

我们rob_函数就是解决不环绕的一列房子问题。

接着把环绕的问题转化为不环绕的问题。

如果数组的长度大于1。

如果我们考虑第一个房子,而不考虑最后一个房子,只需要填写dp表中下标2到下标numsSize状态的推导填写。

如果我们不考虑第一个房子,而考虑最后一个房子,只需要填写dp表中下标3到下标numsSize+1的状态的推导填写。

如果数组的长度等于1。

考虑nums[0]的金额数。

如果数组长度为1,num1和num2计算出来的值都是零,因为numsSize 为1,而循环是从下标2开始或者从下标3开始,所以最后的返回值是初始化的零。

此时只需要返回nums[0]即可,nums [0]一定大于0。

所以返回比较num1,num2和nums[0]即可。

结尾

今天我们学习了动态规划的思想,动态规划思想和数学归纳法思想有一些类似,动态规划在模拟数学归纳法的过程,已知一个最简单的基础解,通过得到前项与后项的推导关系,由这个最简单的基础解,我们可以一步一步推导出我们希望得到的那个解,把我们得到的解依次存放在dp数组中,dp数组中对应的状态,就像是数列里面的每一项。最后感谢您阅读我的文章,对于动态规划系列,我会一直更新,如果您觉得内容有帮助,可以点赞加关注,以快速阅读最新文章。

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1331914.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

YOLOv8改进 | 主干篇 | 利用SENetV1改进网络结构 (ILSVRC冠军得主)

一、本文介绍 本文给大家带来的改进机制是SENet&#xff08;Squeeze-and-Excitation Networks&#xff09;其是一种通过调整卷积网络中的通道关系来提升性能的网络结构。SENet并不是一个独立的网络模型&#xff0c;而是一个可以和现有的任何一个模型相结合的模块(可以看作是一…

Linux 宝塔mysql莫名其妙数据库不见了恢复数据库

起因&#xff1a;宝塔安装的mysql 线上运行突然表包括库都不见了&#xff0c;想办法恢复数据库 登陆mysql cd /www/server/mysql/binmysql -u root -p查看binlog日志是否打开 show variables like log_%;log_bin如果为 ON 则为开启状态&#xff0c;如果开启了才可以进行下一…

研究论文 2022-Oncoimmunology:AI+癌RNA-seq数据 识别细胞景观

Wang, Xin, et al. "Deep learning using bulk RNA-seq data expands cell landscape identification in tumor microenvironment." Oncoimmunology 11.1 (2022): 2043662. https://www.tandfonline.com/doi/full/10.1080/2162402X.2022.2043662 被引次数&#xff1…

哈希拓展攻击CTF题做法

目录 基础&#xff1a; 盐&#xff08;Salt&#xff09;&#xff1a; 哈希长度拓展攻击&#xff1a; kali下载相关工具hash-ext-attack&#xff1a; hash拓展题目特征&#xff1a; 哈希拓展ctf题&#xff1a; 2023楚慧杯upload_shell 实验吧之让我进去&#xff1a; 前言…

关于“Python”的核心知识点整理大全38

14.1.1 创建 Button 类 由于Pygame没有内置创建按钮的方法&#xff0c;我们创建一个Button类&#xff0c;用于创建带标签的实心矩形。 你可以在游戏中使用这些代码来创建任何按钮。下面是Button类的第一部分&#xff0c;请将这个类保存为 文件button.py&#xff1a; button.py …

渗透实验 XSS和SQL注入(Lab3.0)

windows server2003IIS搭建 配置2003的虚拟机 1、利用AWVS扫描留言簿网站&#xff08;安装见参考文档0.AWVS安装与使用.docx&#xff09;&#xff0c;发现其存在XSS漏洞&#xff0c;截图。 2、 Kali使用beef生成恶意代码 cd /usr/share/beef-xss./beef执行上面两条命令 …

Maven核心概念

1 Maven工程的GAVP Maven 中的 GAVP 是指 GroupId、ArtifactId、Version、Packaging 等四个属性的缩写&#xff0c;其中前三个是必要的&#xff0c;而 Packaging 属性为可选项。 这四个属性主要为每个项目在maven仓库中做一个标识&#xff0c;方便项目之间相互引用。 GAV G 即…

模式识别与机器学习(八):决策树

1.原理 决策树&#xff08;Decision Tree&#xff09;&#xff0c;它是一种以树形数据结构来展示决策规则和分类结果的模型&#xff0c;作为一种归纳学习算法&#xff0c;其重点是将看似无序、杂乱的已知数据&#xff0c;通过某种技术手段将它们转化成可以预测未知数据的树状模…

使用vue-qr,报错in ./node_modules/vue-qr/dist/vue-qr.js

找到node_modules—>vue-qr/dist/vue-qr.js文件&#xff0c;搜…e,将…去掉&#xff0c;然后重新运行项目。

【RabbitMQ】RabbitMQ详解(二)

RabbitMQ详解 死信队列死信来源消息TTL过期队列达到最大长度消息被拒绝 RabbitMQ延迟队列TTL的两种设置队列设置TTL消息设置TTL 整合SrpingBoot队列TTL延时队列TTL优化Rabbtimq插件实现延迟队列 死信队列 先从概念解释上搞清楚这个定义&#xff0c;死信&#xff0c;顾名思义就…

使用keytool查看Android APK签名

文章目录 一、找到JDK位置二、使用方法2.1 打开windows命令行工具2.2 查看签名 三、如何给APK做系统签名呢? 一、找到JDK位置 安卓AS之后&#xff0c;可选择继续安装JDK&#xff0c;如本文使用amazon版本默认位置&#xff1a;C:\Users\66176.jdks\corretto-1.8.0_342可通过自…

数据预处理:多重共线性_检测和解决办法

文章目录 1.多重共线性简介&#xff08;Collinearity and Multicollinearity&#xff09;1.1 多重共线性的后果1.2 处理多重共线性问题的方法 2. 设置2.1 导入库2.2 数据集特征波士顿房价BMI 数据集 2.3 导入数据 3. 相关矩阵3.1 聚类图 4. 方差膨胀因子4.1 两种多重共线性4.2 …

HackTheBox - Medium - Linux - Format

Format Format 是一种中等难度的 Linux 机器&#xff0c;它突出显示了由解决方案的结构方式引起的安全问题。立足点涉及PHP源代码审查&#xff0c;发现和利用本地文件读/写漏洞&#xff0c;并利用Nginx中的错误配置在Redis Unix套接字上执行命令。横向移动包括浏览 Redis 数据…

指针的含义

我们还取前面图片解释的道理&#xff1a; pa表示的意思就是这个地址&#xff0c;并不会显示出10这个数字 *pa就是指针&#xff0c;最后指向了a10&#xff0c;所以他最后程序输出是10 &pa这个含义就是取pa的地址&#xff0c;那么pa是一个虚拟的地址&#xff0c;只是简单的…

7种常见的网络安全设备及其功能

网络安全设备在现代网络环境中起着至关重要的作用&#xff0c;帮助保护个人和组织免受恶意攻击。本文将介绍7种常见的网络安全设备&#xff0c;包括防火墙、入侵检测系统、反病毒软件、数据加密设备、虚拟私人网络、安全信息和事件管理系统以及网络访问控制设备&#xff0c;并详…

Apache RocketMQ,构建云原生统一消息引擎

本文整理于 2023 年云栖大会林清山带来的主题演讲《Apache RocketMQ 云原生统一消息引擎》 演讲嘉宾&#xff1a; 林清山&#xff08;花名&#xff1a;隆基&#xff09;&#xff0c;Apache RocketMQ 联合创始人&#xff0c;阿里云资深技术专家&#xff0c;阿里云消息产品线负…

postgresql vacuum流程分析

概述 VACUUM是postgresql MVCC机制不可分割的组成部分。 postgresql在管理同一个元组的多个版本时&#xff0c;采取在堆表页面上从老版本到新版本放置元组的方法&#xff0c;每个元组都记录了xmax和xmin用于判断其可见性。这样的好处是&#xff08;1&#xff09;在索引键没有…

RasaGPT对话系统的工作原理

RasaGPT 结合了 Rasa 和 Langchain 这 2 个开源项目&#xff0c;当超出 Rasa 现有意图(out_of_scope)的时候&#xff0c;就会执行 ActionGPTFallback&#xff0c;本质上就是利用 Langchain 做了一个 RAG&#xff0c;调用 LLM API。RasaGPT 涉及的技术栈比较多而复杂&#xff0c…

OpenCV | 霍夫变换:以车道线检测为例

霍夫变换 霍夫变换只能灰度图&#xff0c;彩色图会报错 lines cv2.HoughLinesP(edge_img,1,np.pi/180,15,minLineLength40,maxLineGap20) 参数1&#xff1a;要检测的图片矩阵参数2&#xff1a;距离r的精度&#xff0c;值越大&#xff0c;考虑越多的线参数3&#xff1a;距离…

[python]用python实现对arxml文件的操作

目录 关键词平台说明一、背景二、方法2.1 库2.2 code 关键词 python、excel、DBC、openpyxl 平台说明 项目Valuepython版本3.6 一、背景 有时候需要批量处理arxml文件(ARXML 文件符合 AUTOSAR 4.0 标准)&#xff0c;但是工作量太大&#xff0c;阔以考虑用python。 二、方…