智能优化算法应用:基于饥饿游戏算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2025/5/20 8:23:39

智能优化算法应用:基于饥饿游戏算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于饥饿游戏算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.饥饿游戏算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用饥饿游戏算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.饥饿游戏算法

饥饿游戏算法原理请参考:https://blog.csdn.net/u011835903/article/details/122305294
饥饿游戏算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


饥饿游戏算法参数如下:

%% 设定饥饿游戏优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明饥饿游戏算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1326761.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

本地配置Java支付宝沙箱环境模拟支付并内网穿透远程调试

文章目录 前言1. 下载当面付demo2. 修改配置文件3. 打包成web服务4. 局域网测试5. 内网穿透6. 测试公网访问7. 配置二级子域名8. 测试使用固定二级子域名访问 前言 在沙箱环境调试支付SDK的时候,往往沙箱环境部署在本地,局限性大,在沙箱环境…

常见的Web攻击手段分析总结,实战案例:通过 X-Forwarded-Host 的密码重置令牌泄漏

常见的Web攻击手段分析总结,实战案例:通过 X-Forwarded-Host 的密码重置令牌泄漏。 常见的 Web 攻击手段主要有 XSS 攻击、CSRF 攻击、SQL 注入攻击、DDos 攻击、文件漏洞攻击等。这几种攻击方式的防护手段并不复杂,却还是有很多企业遭受了该攻击,朔源到头,还是因为人为的…

LeetCode 热题100——单调栈

​ 个人主页:日刷百题 系列专栏:〖C语言小游戏〗〖Linux〗〖数据结构〗 〖C语言〗 🌎欢迎各位→点赞👍收藏⭐️留言📝 ​ ​ 写在前面: 递增单调栈:栈中元素从栈底到栈顶依次增大 递减单调栈…

SE-Net:Squeeze-and-Excitation Networks(CVPR2018)

文章目录 AbstractIntroduction表征的重要性以前的方向本文提出 Related WorkDeeper ArchitectureAlgorithmic Architecture SearchAttention and gating mechanisms Squeeze-and-Excitation BlocksSqueeze: Global Information EmbeddingExcitation: Adaptive RecalibrationIn…

Temporary failure in name resolution

报错: 1.打开resolv.conf文件 sudo vim /etc/resolv.conf 2. 确保resolv.conf文件至少包含一个名称服务器。列出名称服务器的行应如下所示: 3. 保存文件并退出。 4. 接下来,重新启动DNS 解析器服务。运行以下命令: sudo syste…

androidStudio版本下载链接记录

androidStudio 最新官网版本: 下载 Android Studio 和应用工具 - Android 开发者 | Android DevelopersAndroid Studio 提供了一些应用构建器以及一个已针对 Android 应用进行优化的集成式开发环境 (IDE)。立即下载 Android Studio。https://developer.android.g…

创建型模式 | 原型模式

一、原型模式 1、原理 原型模式,用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象。原型模式其实就是从一个对象再创建另外一个可定制的对象,而且不需要知道任何创建的细节。原型像是一个模板,可以基于它复制好多…

二叉树题目:输出二叉树

文章目录 题目标题和出处难度题目描述要求示例数据范围 前言解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题:输出二叉树 出处:655. 输出二叉树 难度 6 级 题目描述 要求 给定二叉树的根结点 root \textt…

探索未来交通!空客、宝马开启新一轮“量子计算挑战赛”

12月6日,空中客车公司和宝马集团共同发起了一项名为 “量子交通探索”的全球量子计算挑战赛,以应对航空和汽车领域最紧迫的挑战——这些挑战对于传统计算机而言仍然是难以克服的。 这项挑战是首创性的,它将两个全球行业领导者聚集在一起&…

堆的时间复杂度

1、堆排序的时间复杂度为O(nlogn) 2、对N个元素建堆的时间复杂度为O(N),删除堆顶元素的时间复杂度为O(logN),因此删除堆所有元素的时间复杂度为O(NlogN)。 3、不管数组初始时是有序的还是逆序的,堆排序都会先建堆,变成了堆序的性…

《每天一分钟学习C语言·五》

1、 给一个字符数组输入字符串 char arr[10]; gets[arr]; //gets函数接收回车符,如果直接按回车,gets函数会把回车符转变成空字符作为结束,即arr[0]’\0’;2、 文件结尾标志ctrlz表示返回NULL 自己定义的头文件里面一般有宏定义和声明&#…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Button按钮组件

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Button按钮组件 一、操作环境 操作系统: Windows 10 专业版 IDE:DevEco Studio 3.1 SDK:HarmonyOS 3.1 二、Button按钮组件 Button 组件也是基础组件之一,和其它基础组件不…

QT打包exe文件,在其它电脑里双击exe就可以直接运行

想要不依赖QT环境,在其它电脑里直接双击exe文件就可以运行当前程序。具体打包过程如下: 使用QT编译出release版本的exe release版本运行无误后,需要找到当前构建生成的exe所在文件夹 可以看到具体目录在这里 我在该目录下的bin文件夹里找到…

ICC2:Less than minimum edge length和Concave convex edge enclosure

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 首先,要介绍一下这两种drc Less than minimum edge length对应的tf rule如下: 而Concave convex edge enclosure对应图示和tf 规则如下,可

linux中vim命令修改jar包中的文件内容

文章目录 概述vim命令修改配置文件 概述 首先问问为什么要直接修改jar包中的文件,而不是重新打包,在非必要的情况下,不要直接修改jar包,这样容易出事故; 当然也有一些场景不得不修改jar包,比如&#xff1a…

TrustZone之示例用例——空中固件更新

这第二个示例涉及更新引导固件。我们系统的要求如下: • 新的固件镜像通过网络提供。 • 只能安装经过身份验证的镜像。 • 固件版本不能回滚。 为了实现这些目标,OEM 使用其私钥对图像进行签名。下载设备配备了公钥,它可以用来验证签名。…

3D模型人物换装系统(三 优化合批处理,提取合批配置可,封装)

3D模型人物换装系统三(优化合批处理,提取合批配置可,封装) 介绍法线贴图问题规划以及封装缺陷修改整理 整合总结 介绍 本文使用2018.4.4和2020.3.26进行的测试 这里先说一下我上一篇没有解决的问题,法线贴图不正确&am…

24岁,拿到18K,我真的很卷?

前言 前段时间去面试了一个公司,成功拿到了offer,薪资也从12k涨到了18k,对于工作还没两年的我来说,还是比较满意的,毕竟一些工作3、4年的可能还没我高。 我可能就是大家说的卷王,感觉自己年轻&#xff0c…

MySQL,使用Union组合查询

1、基本使用 Union可将多条select语句组合成一个结果集&#xff0c;常见的使用场景有2种&#xff1a; 在单个查询中&#xff0c;从不同的表返回类似结构的数据&#xff1b;对单个表执行多个查询&#xff0c;按单个查询返回数据。 例&#xff1a;检索出所有价格<50的产品&…

java多线程创建的三种方式

第一种 第二种 第三种&#xff08;想获得线程的执行结果&#xff0c;建议使用这种&#xff09;