一、五种算法介绍
(1)红狐优化算法(Red fox optimization,RFO)
(2)灰狼优化算法(Grey Wolf Optimizer,GWO)
(3)蜣螂优化算法(Dung beetle optimizer,DBO)
(4)哈里斯鹰优化算法(Harris Hawks Optimization,HHO)
(5)麻雀搜索算法(sparrow search algorithm,SSA)
二、五种算法求解23个测试函数
23个基本函数介绍
测试集:23组基本测试函数简介及图像(提供python代码)_IT猿手的博客-CSDN博客

部分代码:
from FunInfo import Get_Functions_details
from RFO import RFO
from GWO import GWO
from DBO import DBO
from HHO import HHO
from SSA import SSA
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['Microsoft YaHei']
#主程序
function_name =14 #测试函数1-23
SearchAgents_no = 50#种群大小
Max_iter = 100#迭代次数
lb,ub,dim,fobj=Get_Functions_details(function_name)#获取问题信息
BestX1,BestF1,curve1 = RFO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
BestX2,BestF2,curve2 = GWO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
BestX3,BestF3,curve3 = DBO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
BestX4,BestF4,curve4 = HHO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
BestX5,BestF5,curve5 = SSA(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
#画收敛曲线图
Labelstr=['RFO','GWO','DBO','HHO','SSA']
Colorstr=['r','g','b','k','c']
if BestF1>0:
plt.semilogy(curve1,color=Colorstr[0],linewidth=2,label=Labelstr[0])
plt.semilogy(curve2,color=Colorstr[1],linewidth=2,label=Labelstr[1])
plt.semilogy(curve3,color=Colorstr[2],linewidth=2,label=Labelstr[2])
plt.semilogy(curve4,color=Colorstr[3],linewidth=2,label=Labelstr[3])
plt.semilogy(curve5,color=Colorstr[4],linewidth=2,label=Labelstr[4])
else:
plt.plot(curve1,color=Colorstr[0],linewidth=2,label=Labelstr[0])
plt.plot(curve2,color=Colorstr[1],linewidth=2,label=Labelstr[1])
plt.plot(curve3,color=Colorstr[2],linewidth=2,label=Labelstr[2])
plt.plot(curve4,color=Colorstr[3],linewidth=2,label=Labelstr[3])
plt.plot(curve5,color=Colorstr[4],linewidth=2,label=Labelstr[4])
plt.xlabel("Iteration")
plt.ylabel("Fitness")
plt.xlim(0,Max_iter)
plt.title("F"+str(function_name))
plt.legend()
plt.savefig(str(function_name)+'.png')
plt.show()
部分结果:








三、参考代码



















