2022年圣诞节到来啦,很高兴这次我们又能一起度过~
 CSDN诚邀各位技术er分享关于圣诞节的各种技术创意,展现你与众不同的精彩!参与本次投稿即可获得【话题达人】勋章+【圣诞快乐】定制勋章(1年1次,错过要等下一年喔)!
你可以从以下几个方面着手(不强制),或者根据自己对话题主题的理解创作,参考如下:
提醒:在发布作品前请把不用的内容删掉
本可以蓝桥ROS云课复现,后续补充。
一组cocube绘制圣诞树
之前,有绘制各类优美曲线的博客,但是一个机器人绘制效率肯定是有限的,那么一组机器人效果一定就是倍数关系啦。
优美的曲线(含蝴蝶线)-CoCube
如何将数学曲线变为机器人轨迹-花式show爱心代码-turtlesim篇
一、前言
提示:可简单介绍此次创意背景。
Turtlesim修改为CoCube,使用sketch工具包绘制出圣诞树。
 
 
需要用到的功能包:
- turtlesim
- sketch
二、创意名
提示:可介绍本篇文章要实现的圣诞节相关技术创意。
绘制各类圣诞树随心所欲哦。
 
 
这个功能包有个啥子小问题呢。
就是绘制过程中,各个小机器人分配任务不均衡。
经常出现一人绘制,万人围观的场面呢。
只剩一个绘制了。

绘制完成后。
 
 
三、效果展示
提示:可展示本篇文章要实现的圣诞节相关技术创意最终效果。
需要绘制的圣诞树越复杂需要的机器人数量越多。
一号圣诞树:

二号圣诞树:

换个颜色:

完成后:

四、实现步骤
提示:可详细介绍实现相关创意的操作步骤。
需要ROS+Turtlesim+Sketch。
配置好Project: Turtle-Sketch。
在终端输入:
roslaunch sketch sketcher.launch
ros@ros:~/RobCode/sketch$ roslaunch sketch sketcher.launch 
... logging to /home/ros/.ros/log/0c537ad0-890a-11ed-a964-4789d50e4dcc/roslaunch-ros-278770.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.
started roslaunch server http://ros:34897/
SUMMARY
========
PARAMETERS
 * /rosdistro: noetic
 * /rosversion: 1.15.15
NODES
  /
    CannyThresholding (image_thresholding/server.py)
    ImagePath (image_thresholding/import_server.py)
    Sketch (sketch/sketcher.py)
    rqt_reconfigure (rqt_reconfigure/rqt_reconfigure)
    sim (turtlesim/turtlesim_node)
auto-starting new master
process[master]: started with pid [278778]
ROS_MASTER_URI=http://localhost:11311
setting /run_id to 0c537ad0-890a-11ed-a964-4789d50e4dcc
process[rosout-1]: started with pid [278788]
started core service [/rosout]
process[rqt_reconfigure-2]: started with pid [278791]
process[CannyThresholding-3]: started with pid [278792]
process[ImagePath-4]: started with pid [278797]
process[sim-5]: started with pid [278798]
process[Sketch-6]: started with pid [278799]
Max =  120 	Min =  50
[INFO] [1672491199.756063]: Address selected
[INFO] [1672491199.760637]: Image Loaded
[INFO] [1672491199.761917]: Select minimum and maximum threshold
Max =  120 	Min =  50
[INFO] [1672491203.376289]: Spawning an army of turtles to sketch your image
[INFO] [1672491205.530128]: Sketching ....
[INFO] [1672491292.705367]: Press Ctrl+C to terminate the program
导入具体圣诞树图片:
/home/ros/RobCode/sketch/src/sketch/scripts/c1.jpeg

等待绘制完成即可。
五、编码实现
提示:可详细展示实现相关创意的代码。
绘制核心代码Python版本。
具体可参考:
Program to sketch the contours in a turtle-sim
Author: Shilpaj Bhalerao
Date: Aug 30, 2020
#!/usr/bin/env python3.8
"""
Program to sketch the contours in a turtle-sim
Author: Shilpaj Bhalerao
Date: Aug 30, 2020
"""
import rospy
import numpy as np
import math
import sys
import time
import multiprocessing
import cv2
import matplotlib.pyplot as plt
from geometry_msgs.msg import Twist
from turtlesim.msg import Pose
from turtlesim.srv import *
from std_srvs.srv import Empty
from Turtle import *
# from sketch.msg import points, groups, segments
# from sketch.srv import test
import itertools
INTERNAL = False
class Robot:
    def __init__(self, parallel=1):
        self.count = 1
        self.list = []
        self.processes = []
        self.PARALLEL = parallel
        self.start = False
        self.image = None
        self.activate = True
        self.draw_contour = False
        # Variables to access contours data
        self.collection_points = []
        self.collection_segments = []
        self.collection_groups = []
        # Initialize sketcher node
        rospy.init_node('sketcher', anonymous=False)
        # Publisher
        self.pub = rospy.Publisher('/turtle1/cmd_vel', Twist, queue_size=10)
        # Subscriber
        # rospy.Subscriber('contours', segments, self.callback)
        # Rate to control frequency of operation of node
        self.rate = rospy.Rate(1)  # 10hz
        # Reset the turtle-sim simulator
        reset_sim()
        time.sleep(2)  # Delay to make sure dynamic reconfigure is ready
        while not rospy.is_shutdown():
            if INTERNAL:  # Test the code without the data exchange from outside node
                center = [5.54, 5.54]
                origin = [4.0, 4.0]
                l_top = [4.0, 9.0]
                r_top = [9.0, 9.0]
                l_bottom = [4.0, 4.0]
                r_bottom = [9.0, 4.0]
                self.start = True
                self.contours = [[(1, 1), (4, 2), (3, 3,), (4, 9), origin],
                                 [(9, 1), (1, 2), (1, 3,), (9, 9), (9, 4), origin],
                                 [center, l_top, r_top, r_bottom, l_bottom, center]]
                self.numbers = len(self.contours)
            elif not INTERNAL:  # Test the code with other nodes data
                # Wait for user to select image from a path or capture an image using camera
                if self.activate and not self.draw_contour:
                    self.load_img()
                # After selecting image, start drawing contours and adjust the threshold
                if self.activate and rospy.get_param('ImagePath/Capture'):
                    self.find_contours()
            # After finalizing contours, spawn an army of turtles and start sketching
            if self.start:
                # Spawn turtle at the first point of the contours
                self.spawn_source()
                if self.PARALLEL == 0:  # If sequential implementation mode is selected
                    self.trace()
                elif self.PARALLEL == 1:  # If parallel implementation mode is selected
                    rospy.loginfo("Sketching ....")
                    # Code for Multi-processing
                    for i in range(self.numbers):
                        p = multiprocessing.Process(target=self.trace_parallel, args=[i])
                        p.start()
                        self.processes.append(p)
                    for process in self.processes:
                        process.join()
                # Remove the turtles after sketching is done
                self.kill_destination()
                rospy.loginfo("Press Ctrl+C to terminate the program")
                rospy.spin()
            else:
                pass
    # ------------------------------- Functions related to image processing ----------------------------
    def load_img(self):
        """
        Load image using either:
        - Path of an image
        - Using a camera
        """
        while self.image is None:
            types = rospy.get_param('ImagePath/CaptureType')  # Check either camera or path is selected
            # If image path is selected
            if types == 0:
                image_path = rospy.get_param('ImagePath/img_path')  # Read the path
                self.image = cv2.imread(image_path)  # Load an image from the path
                # If image is loaded properly, start finding edges
                if self.image is not None:
                    rospy.loginfo("Address selected")
                    self.draw_contour = True
                    break
            # If camera is selected
            elif types == 1:
                cap = cv2.VideoCapture(0)
                while True:
                    # Check if frame is selected
                    condition = rospy.get_param('ImagePath/Capture')
                    # Capture frame-by-frame
                    ret, frame = cap.read()
                    # Display the resulting frame
                    cv2.imshow('Capture Image to Sketch', frame)
                    cv2.waitKey(1)
                    # If frame is selected properly, start finding edges
                    if condition:
                        self.image = frame
                        cv2.destroyWindow('Capture Image to Sketch')
                        self.draw_contour = True
                        break
        # Resize image since turtle-sim dimensions are 500 x 500
        self.image = cv2.resize(self.image, (500, 500))
        rospy.loginfo("Image Loaded")
        rospy.loginfo("Select minimum and maximum threshold")
    def find_contours(self):
        """
        Find edges and contours in an image
        """
        # Grayscale
        gray = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
        # Find Canny edges using threshold inputs
        gains = rospy.get_param('/Thresholds')
        min_val = gains[0]
        max_val = gains[1]
        edged = cv2.Canny(gray, min_val, max_val)
        cv2.imshow("Select Threshold Values", edged)
        cv2.waitKey(1)
        # If edges are selected, start drawing sketch
        start = rospy.get_param('/Activate')
        if start:
            # Find contours
            contours, hierarchy = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
            # Convert contours to accessible data format
            self.contour_to_accessible_format(contours)
            # Draw all contours on a blank image
            blank = np.zeros(shape=[500, 500, 3], dtype=np.uint8)
            cv2.drawContours(blank, contours, -1, (255, 255, 255), 1)
    def contour_to_accessible_format(self, contours):
        """
        Function to convert the opencv contours to accessible data format
        - Collection of x,y coordinates is a point
        - Collection of points is a segment
        - Collection of segments is a group
        - Collection of groups is a contour
        :param contours: Extracted contours from the image
        :type contours: opencv contours
        """
        for i in range(len(contours)):  # For all the contours
            if len(contours[i]) > 10:  # If they have more than 10 points
                for j in range(len(contours[i])):  # Find the x,y coordinates of all the points
                    x_cord = (contours[i][j][0][0] * 11) / 500  # Convert points within (11, 11) i.e. size of turtle-sim
                    y_cord = (contours[i][j][0][1] * 11) / 500
                    # Save these coordinates in a list named collection_points and subtract y from 11 to make upright
                    # image
                    self.collection_points.append((x_cord, 11.0 - y_cord))
                # Collect all line segments in collection_segments list
                self.collection_segments.append(self.collection_points)
                self.collection_points = []
            # Collect all groups in collection_groups list
            self.collection_groups.append(self.collection_segments)
        # Collection of all contours in contours
        self.contours = self.collection_segments
        # Total number of contours
        self.numbers = len(self.contours)
        # Reset and code flow
        self.collection_segments = []
        self.activate = False
        self.start = True
    # ------------------------------- Functions related to sketching turtle path ----------------------------
    def trace_parallel(self, j):
        """
        Function to trace the contours using multi-processing
        :param j: Number of multi-processes
        :type j: Int
        """
        # Take x,y coord. of next point in contour and teleport turtle to that point(for all contours simultaneously)
        for k in range(len(self.contours[j])):
            self.list[j].teleport(self.contours[j][k][0], self.contours[j][k][1], 0.0)
    def trace(self):
        """
        Function to trace the contours using sequential programming
        """
        # Take x,y coord. of next point in contour and teleport turtle to that point(for one contour at a time)
        for j in range(self.numbers):
            for k in range(len(self.contours[j])):
                self.list[j].teleport(self.contours[j][k][0], self.contours[j][k][1], 0.0)
    # ------------------------------- Functions related to turtle actions ----------------------------
    def spawn_source(self):
        """
        Spawn multiple turtles on the first point of each contour
        """
        rospy.loginfo("Spawning an army of turtles to sketch your image")
        for i in range(self.numbers):
            self.list.append(Turtle(i + 1))
            if i == 0:
                self.list[0].set_pen(0)
                self.list[0].teleport(self.contours[i][0][0], self.contours[i][0][1], 0.0)
                self.list[0].set_pen(1)
            else:
                self.list[i].spawn(self.contours[i][0][0], self.contours[i][0][1], 0.0)
    def kill_destination(self):
        """
        Remove the turtles from simulation at the end of sketching
        """
        for i in range(self.numbers):
            self.list[i].kill_turtle()
def reset_sim():
    """
    Function to reset the simulator
    """
    try:
        reset_serv = rospy.ServiceProxy('/reset', Empty)
        reset_serv()
    except rospy.ServiceException as e:
        rospy.loginfo("Service execution failed: %s" + str(e))
if __name__ == '__main__':
    try:
        turtle = Robot(int(sys.argv[1]))
    except KeyboardInterrupt:
        exit()
原作品机器翻译如下:
#项目:海龟素描
 ##概述
 -在这个项目中,左边的图像作为输入,右边的图像作为输出,使用turtlesim
 -左侧的图像可以使用其路径选择,也可以直接从相机拍摄
 -以下视频显示了该项目的实际情况
 ---
 ##使用的概念
 以下是本项目使用的概念:
 -**动态重新配置**
 -使用路径导入图像
 -使用相机导入图像
 -设置Canny边缘检测的阈值
 -**ROS参数**
 -设置阈值参数的值
 -获取阈值参数的值
 -**ROS服务**
 -产卵海龟
 -传送海龟
 -将笔的状态设置为-ON/OFF
 -完成草图后移除海龟
 -**OpenCV**
 -导入图像的步骤
 -使用Canny边缘检测查找边缘
 -查找轮廓的步骤
 -**多处理**
 -为了画草图而生下一群海龟
 ---
 ##目录结构
 -该目录包含3个包:
 -“草图`
 -`动态重新配置`
 -`image_thresholding`
 -草图目录结构
 ```
   ├── CMakeLists.txt
   ├── docs                                 # Supported files for documentation
   │   ├── Contours.png
   │   ├── done.png
   │   ├── dynamic reconfigure.png
   │   ├── edges.png
   │   ├── Output.png
   │   ├── rosgraph.png
   │   ├── test.png
   │   └── turtles.png
   ├── include
   │   └── sketch
   ├── launch                                # Launch Files
   │   └── sketcher.launch
   ├── package.xml
   ├── README.md
   ├── nodes                                 # ROS Nodes
   │   ├── ironman.jpeg
   │   ├── sketcher.py
   │   └── Turtle.py
   └── TODO.md                               # TO DO for next version
 ```
 -Image_thresholding目录结构
 ```
   .
   ├── cfg                                    # Configuration file for GUI
   │   ├── import.cfg                         # GUI params related to image import
   │   └── thresholds.cfg                     # GUI params related to image thresholding
   ├── CMakeLists.txt
   ├── include
   │   └── dynamic_parameters
   ├── launch                                 # Launch files 
   │   └── canny_thresholding.launch            # Launch - GUI for Canny edge detection
   ├── nodes                                  # ROS Nodes
   │   ├── get_values.py
   │   ├── import_server.py                   # Import Image import parameters in python node
   │   └── server.py                          # Import thresholding parameters in python node
   └── package.xml
 ```
 ---
 ##编码风格指南-PEP8
 ---
 ##依赖关系
 -“动态重新配置”包
 -`OpenCV`
 ---
 ##安装和运行
 要在本地系统上运行项目,请执行以下步骤:
 -下载软件包“sketch”、“image_thresholding”和“dynamic-reconfigure noetic-devel”`
 -将这些包复制到ROS工作区,即`~/ROS_ws/src/`
 -构建工作区
 -`$cd~/ROS_ws/`
 -`$catkin_make`
 -打开新终端并获取ROS工作区的源代码-`source~/ROS_ws/devel/setup.bash`
 -运行命令-`$roslaunch sketcher.raunch`
 -此命令将打开此项目的turtlesim和GUI
 
 
 -您可以为`CaptureType选择图像**地址(0)**或**照相机(1)**选项`
 -如果选择*Address(0)*,请在“img_path”部分中插入系统上图像的路径
 -然后单击`Capture前面的复选框`
 -如果您选择*照相机(0)*,照相机窗口将弹出,您可以在获得所需帧后单击“捕获”前面的复选框
 -这将打开一个窗口,其中包含选定帧中的边
 
 -现在,使用GUI设置最小和最大阈值以获得所需的轮廓
 -单击“开始”前面的复选框,产生一支海龟大军,它将为您绘制这些轮廓
 
 -草图完成后,海龟会消失
 
 **注:**
 -如果要将方法从并行更改为顺序,请执行以下步骤:
 1.在此目录中打开启动文件`~/ROS_ws/sketch/launch/`
 2.sketcher节点的“arg”标记的值为1
 3.将此值更改为`0`
 -这里,0=顺序执行,1=并行执行
可扩展部分:
#要执行的操作:
 参考-turtle_actionlib
 ##项目1:绘制等高线
 ##下一版本的任务
 -[]为等高线数据传输创建自定义消息
 -[]在主题上传输等高线数据
 -[]通过服务传输等高线数据
 -[]使用ROS参数传输等高线数据
 -[]添加加权原始图像,为GitHub配置文件创建一个漂亮的.gif文件
 -[]使用GUI窗口上的按钮
 -[]创建插件
 -[]SRS文件
 -[]编码结构图
 -[x]导入图像
 -[x]查找轮廓
 -[x]在代码中添加自定义阈值
 -[x]使用套头衫绘制芋头
 -[x]将乌龟从一点移动到另一点
 -[x]繁殖多只海龟
 -[x]将繁殖的海龟传送到轮廓的第一个点
 -[x]顺序轮廓绘制
 -[x]同时绘制多个轮廓的多重处理
 -[x]用于捕获图像或加载图像并显示输出的GUI
 -[x]使用ROS1 Noetic
 -[]用于生产的ROS2端口
 -[]遵循编码样式
 -[]创建文档
 -[]优化代码
 -[]使用PyCUDA在GPU上运行代码
 -[x]文档
 -依赖关系
 -环境文件
 -[]包装和出版
 -[]日志记录模块
 -[x]README文件
 -[]包括使用的概念和与概念的良好资源链接
 ---
 ##项目2:如果可以,请抓住我
 -[]动议
 -[]动态配置
 -[]PID的自定义消息
 -[x]用于精确控制的PID控制器类代码
 -[]实现PID调节的动态重新配置
 ---
 ##项目3:
 -[]TF合作伙伴
 -[]在turtlesim中创建另一个坐标系
 -[]将海龟移到某个位置,并显示相对于另一个原点的坐标
提醒:在发布作品前请把不用的内容删掉


















