1.8 Spark编程入门
1.8.1 通过IDEA创建Spark工程
ps:工程创建之前步骤省略,在scala中已经讲解,直接默认是创建好工程的 导入Pom文件依赖
<!-- 声明公有的属性 -->
<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<encoding>UTF-8</encoding>
<scala.version>2.12.8</scala.version>
<spark.version>3.1.2</spark.version>
<hadoop.version>3.2.1</hadoop.version>
<scala.compat.version>2.12</scala.compat.version>
</properties>
<!-- 声明并引入公有的依赖 -->
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency>
</dependencies>
<!-- 配置构建信息 -->
<build>
<!-- 资源文件夹 -->
<sourceDirectory>src/main/scala</sourceDirectory>
<!-- 声明并引入构建的插件 -->
<plugins>
<!-- 用于编译Scala代码到class -->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<!-- 程序打包 -->
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.4.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<!-- 过滤掉以下文件,不打包 :解决包重复引用导致的打包错误-->
<filters>
<filter><artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<!-- 打成可执行的jar包 的主方法入口-->
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass></mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
1.8.2 Scala实现WordCount
package com.qianfeng.sparkcore
import org.apache.spark.{SparkConf, SparkContext}
/**
* 使用Spark统计单词个数
*/
object Demo01_SparkWC {
def main(args: Array[String]): Unit = {
//1、获取spark上下文环境 local[n] : n代表cpu核数,*代表可用的cpu数量;如果打包服务器运行,则需要注释掉.setMaster()
val conf = new SparkConf().setAppName("spark-wc").setMaster("local[*]")
val sc = new SparkContext(conf)
//2、初始化数据
val rdd = sc.textFile("/Users/liyadong/data/sparkdata/test.txt")
//3、对数据进行加工
val sumRDD = rdd
.filter(_.length >= 10)
.flatMap(_.split("\t"))
.map((_, 1))
.reduceByKey(_ + _)
//4、对数据进行输出
println(sumRDD.collect().toBuffer)
sumRDD.foreach(println(_))
//5、关闭sc对象
sc.stop()
}
}
1.8.3 程序打包上传集群

在Spark安装目录中的bin目录进行提交作业操作
spark-submit \
--class com.qianfeng.sparkcore.Demo01_SparkWC \
--master yarn \
--deploy-mode client \
/home/original-hn-bigdata-1.0.jar hdfs://qianfeng01:9820/words hdfs://qianfeng01:9820/output/0901
注意:如果HDFS集群中有数据文件直接使用集群的数据文件即可,如果没有的话使用【hdfs dfs -put /home/words /】从Linux系统中将文件上传到HDFS,查看集群中运行之后的结果【hdfs dfs -tail output/0901/*】
Guff_hys_python数据结构,大数据开发学习,python实训项目-CSDN博客



















