计算机网络:可靠数据传输(rdt)、流水协议、窗口滑动协议

news2025/6/3 23:59:27

文章目录

  • 前言
  • 一、Rdt
    • 1.Rdt1.0
    • 2.Rdt2.0
    • 3.Rdt2.1
    • 4.Rdt2.2
    • 5.Rdt3.0
  • 二、流水线协议
    • 1.滑动窗口(slide window)协议
      • 发送窗口
      • 接收窗口
        • 正常情况下的2个窗口互动
        • 异常情况下GBN的2个窗口互动
        • 异常情况下SR的2窗口互动
        • GBN协议和SR协议的异同
    • 2.小结
  • 总结


前言

Rdt1.0、Rdt2.0、Rdt2.1、Rdt2.2、Rdt3.0、流水线协议、滑动窗口协议。


一、Rdt

  • rdt在应用层、传输层和数据链路层都很重要,是网络Top10问题之一。
  • 信道的不可靠特点决定了可靠数据传输协议(rdt)的复杂性

在这里插入图片描述

下面我们只考虑单向数据传输(但是控制信息是双向流动的),双向数据传输实际上就是两个单向数据传输问题的综合,所以我们只考虑单向。下面将会用有限状态机(FSM)来描述发送方和接收方。

1.Rdt1.0

在可靠信道上的可靠数据传输

  • 下层的信道是完全可靠的
    • 没有比特出错
    • 没有分组丢失
  • 发送方和接收方的FSM
    • 发送方将数据发送到下层信道
    • 接收方从下层信道接收数据

在这里插入图片描述

2.Rdt2.0

具有比特差错的信道

  • 下层信道可能会出错:将分组中的比特翻转
    • 用校验和来检测比特差错
  • 问题:怎样从差错中恢复
    • 确认(ACK):接收方显式地告诉发送方分组已被正确接收
    • 否定确认(NAK):接收方显式地告诉发送方分组发生了差错
      • 发送方收到NAK后,发送方重传分组
  • rdt2.0中的新机制:采用差错控制编码进行差错检测
    • 发送方差错控制编码、缓存
    • 接收方使用编码检错
    • 接收方的反馈:控制报文(ACK,NAK):接收方→发送方
    • 发送方收到反馈相应的动作

FSM描述

在这里插入图片描述

  • 根据上图,可以看到:发送方一直等待上层调用,接收方一直在等待下层调用;当上层调用发送方时,发送方将packet(将发送数据封装,带有差错检测信息的数据包(data,checksum))调用函数发送(udt_send),发送后进入等待ACK或NAK确认的状态,并且此状态一直在检测信息NACK还是ACK,如果是NACK就重新调用函数发送packet,如果是ACK就转为等待上层调用的状态。而接收方,如果有差错时(corrupt),调用函数(udt_send)发送NAK信息,没有差错就调用函数发送ACK信息。
  • 接收方差错检测是通过比较发送方带来的checksum(校验和)和自己的校验和结果,一样说明未出错,不一样则为出错。
checksum           //校验和
 
rdt_rcv(rcvpkt)    //对于sender是确认信息
                  //对于receiver是分组
 
isACK(rcvpkt)      //确认信息为ACK
isNAK(rcvpkt)      //确认信息为NAK
 
corrupt(rcvpkt)    //根据校验和发现有差错
notcorrupt(rcvpkt) //根据校验和发现没有差错

思考:

  • 如果ACK/NAK出错?(发送方接收的不是ACK也不是NAK)
    • 发送方不知道接收方发生了什么事情!
    • 发送方如何做?
    • 重传?可能重复
    • 不重传?可能死锁(或出错)
    • 需要引入新的机制
      • 序号
  • 处理重复:
    • 发送方在每个分组中加入序号
    • 如果ACK/NAK出错,发送方重传当前分组
    • 接收方丢弃(不发给上层)重复分组

等停协议发送方发送一个分组,然后等待接收方的应答

3.Rdt2.1

发送方处理出错的ACK/NAK

发送方:
在这里插入图片描述

接收方:
在这里插入图片描述

  • 发送方:
    • 在分组中加入序列号
    • 两个序列号(0,1)就足够了
      • 一次只发送一个未经确认的分组
    • 必须检测ACK/NAK是否出错(需要EDC)
    • 状态数变成了两倍
      • 必须记住当前分组的序列号为0还是1
  • 接收方:
    • 必须检测接收到的分组是否是重复的
      • 状态会指示希望接收到的分组的序号为0还是1
    • 注意:接收方并不知道发送方是否正确收到了其ACK/NAK
      • 没有安排确认的确认
      • 具体解释见下面

在这里插入图片描述

4.Rdt2.2

无NAK的协议

  • 功能同rdt2.l,但只使用ACK(ack要编号)
  • 接收方对最后正确接收的分组发ACK,以替代NAK
    • 接收方必须显式地包含被正确接收分组的序号
  • 当收到重复的ACK(如:再次收到ack0)时,发送方与收到NAK采取相同的动作:重传当前分组
  • 为后面的一次发送多个数据单位做一个准备
    • 一次能够发送多个
    • 每一个的应答都有:ACK,NACK;麻烦
    • 使用对前一个数据单位的ACK,代替本数据单位的nako确认信息减少一半,协议处理简单

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5.Rdt3.0

具有比特差错和分组丢失的信道

  • 新的假设:下层信道可能会丢失分组(数据或ACK)
    • 会死锁
  • 机制还不够处理这种状况:
    • 检验和
    • 序列号
    • ACK
    • 重传
  • 方法:发送方等待ACK一段合理的时间
    • 发送端超时重传:如果到时没有收到ACK-→重传
    • 问题:如果分组(或ACK)只是被延迟了:
      • 重传将会导致数据重复,但利用序列号已经可以处理这个问题
      • 接收方必须指明被正确接收的序列号
    • 需要一个倒计数定时器

链路层的timeout时间确定的传输层timeout时间是适应式的;
链路层的超时时间确定的传输层超时时间是适应式的。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Rdt3.0性能
在这里插入图片描述

Rdt3.0停等操作:
在这里插入图片描述

二、流水线协议

提高链路利用率,提高Rdt3.0性能瓶颈

在这里插入图片描述

  • 流水线:允许发送方在未得到对方确认的情况下一次发送多个分组
    • 必须增加序号的范围:用多个bit表示分组的序号
    • 在发送方/接收方要有缓冲区
      • 发送方缓冲:未得到确认,可能需要重传;
      • 接收方缓存:上层用户取用数据的速率 ≠ 接收到的数据速率;接收到的数据可能乱序,排序交付(可靠)
  • 两种通用的流水线协议:回退N步(GBN)和选择重传(SR)
sending window = 1,receving window = 1   -->  S-W 停等协议

流水线协议:
sending window > 1,receving window = 1   -->  GBN
sending window > 1,receving window > 1   -->  SR

1.滑动窗口(slide window)协议

发送窗口

  • 发送缓冲区
    • 形式:内存中的一个区域,落入缓冲区的分组可以发送
    • 功能:用于存放已发送,但是没有得到确认的分组
    • 必要性:需要重发时可用
  • 发送缓冲区的大小:一次最多可以发送多少个未经确认的分组
    • 停止等待协议 = 1
    • 流水线协议 > 1,合理的值,不能很大,链路利用率不能够超100%
  • 发送缓冲区中的分组
    • 未发送的:落入发送缓冲区的分组,可以连续发送出去;
    • 已经发送出去的、等待对方确认的分组:发送缓冲区的分组只有得到确认才能删除
  • 发送窗口:发送缓冲区内容的一个范围
    • 那些已发送但是未经确认分组的序号构成的空间
  • 发送窗口的最大值<=发送缓冲区的值
  • 一开始:没有发送任何一个分组
    • 后沿=前沿
    • 之间为发送窗口的尺寸 = 0
  • 每发送一个分组,前沿前移一个单位

在这里插入图片描述

  • 发送窗口前沿移动的极限:不能够超过发送缓冲区

在这里插入图片描述

在这里插入图片描述

  • 发送窗口后沿移动
    • 条件:收到老分组的确认
    • 结果:发送缓冲区罩住新的分组,来了分组可以发送
    • 移动的极限:不能够超过前沿

在这里插入图片描述
在这里插入图片描述

发送窗口滑动过程——相对表示法

  • 采用相对移动方式表示,分组不动
  • 可缓冲范围移动,代表一段可以发送的权力

绿色是滑动窗口,粉红色表示已发送未得到确认,浅蓝色表示得到确认

在这里插入图片描述

接收窗口

  • 接收窗口(receiving window)=接收缓冲区
    • 接收窗口用于控制哪些分组可以接收;
      • 只有收到的分组序号落入接收窗口内才允许接收
      • 若序号在接收窗口之外,则丢弃;
    • 接收窗口尺寸Wr = l,则只能顺序接收;
    • 接收窗口尺寸Wr > l,则可以乱序接收
      • 但提交给上层的分组,要按序
    • 例子: Wr=l,在0的位置;只有0号分组可以接收;向前滑动一个,罩在1的位置,如果来了第2号分组,则丢弃;
  • 接收窗口的滑动和发送确认
    • 滑动:
      • 低序号的分组到来,接收窗口移动;
      • 高序号分组乱序到,缓存但不交付(因为要实现rdt,不允许失序)),不滑动
    • 发送确认:
      • 接收窗口尺寸=1 ;发送连续收到的最大的分组确认(累计确认,GBN)
      • 接收窗口尺寸>1;收到分组,发送那个分组的确认(非累计确认,SR)

在这里插入图片描述

正常情况下的2个窗口互动
  • 发送窗口
    • 1.有新的分组落入发送缓冲区范围,发送->前沿滑动
    • 4.来了老的低序号分组的确认->后沿向前滑劫->新的分组可以落入发送缓冲区的范围
  • 接收窗口
    • 2.收到分组,落入到接收窗口范围内,接收
    • 3.是低序号,发送确认给对方
  • 发送端上面来了分组->发送窗口滑动->接收窗口滑动->发确认
异常情况下GBN的2个窗口互动
  • 发送窗口
    • 1.新分组落入发送缓冲区范围,发送->前沿滑动
    • 5.超时重发机制让发送端将发送窗口中的所有分组发送出去
    • 4.来了老分组的重复确认->后沿不向前滑动->新的分组无法落入发送缓冲区的范围(此时如果发送缓冲区有新的分组可以发送)
  • 接收窗口
    • 2.收到乱序分组,没有落入到接收窗口范界内,抛弃
    • 3.(重复)发送老分组的确认,累计确认;
异常情况下SR的2窗口互动
  • 发送窗口
    • 1.新分组落入发送缓冲区范围,发送->前沿滑动
    • 5.超时重发机制让发送端将超时的分组重新发送出去
    • 4.来了乱序分组的确认->后沿不向前滑动->新的分组无法落入发送缓冲区的范围(此时如果发送缓冲区有新的分组可以发送)
  • 接收窗口
    • 2.收到乱序分组,落入到接收窗口范围内,接收
    • 3.发送该分组的确认,单独确认;

每发送一个分组,发送方就会启动一个超时计时器

GBN协议和SR协议的异同
  • 相同之处
    • 发送窗口>1
    • 一次能够可发送多个未经确认的分组
  • 不同之处
    • GBN:接收窗口尺寸 = 1
      • 接收端:只能顺序接收
      • 发送端:从表现来看,一旦一个分组没有发成功,如:0,1,2,3,4;假如1未成功,234都发送出去了,要返回1再重新发送(234也重发)
    • SR:接收窗口尺寸 > 1
      • 接收端:可以乱序接收
      • 发送端:发送0,1,2,3,4,一旦1未成功,2,3,4,已发送,无需重发,选择性发送1

2.小结

Go-back-N:

  • 客户端最多再流水线中有N个未确认的分组
  • 接收端只是发送累计已确认cumulative ack
    • 接收端如果发现gap,不确认新到来的分组
  • 发送端拥有对最老的未确认的定时器
    • 只需设置一个定时器
    • 当定时器到时时,重传所有未确认分组

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Selective repea:

  • 发送端最多在流水线中有N个未确认的分组
  • 接收方对每个到来的分组确认individual ack(非累计确认)
  • 发送方为每个未确认的分组保持一个定时器
    • 当超时定时器到时,只是重发到时的未确认分组

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

对比GBN和SR
在这里插入图片描述

适用范围:

  • 出错率低:比较适合GBN,出错非常罕见,没有必要用复杂的SR,为罕见的事件做日常的准备和复杂处理
  • 链路容量大(延迟大、带宽大):比较适合SR而不是GBN,一点出错代价太大

窗口最大尺寸
在这里插入图片描述

总结

以上就是Rdt和流水协议(窗口滑动)的详细讲解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1286085.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Mac电脑如何安装git

一、简介 在Mac上安装Git之前&#xff0c;可以先使用git --version来查看一下是否安装了Git&#xff0c;因为Mac系统可能自带了Git&#xff0c;或者在你安装XCode&#xff08;或者XCode的命令行工具&#xff09;时&#xff0c;可能已经安装了 Git。 如果Mac还没有安装Git的话&…

做一个类似东郊到家的上门服务类系统有哪些功能?

上门服务系统是一款便捷的技师接单、上门提供理疗服务的软件。我们拥有优秀的开发团队&#xff0c;为您量身定制解决方案&#xff0c;价格合理&#xff0c;用心服务。 预约上门&#xff1a;该功能是预约上门推拿理疗按摩系统软件小程序APP的核心功能。消费者通过系统预约下单&a…

【带头学C++】----- 九、类和对象 ---- 9.5 初始化列表

目录 9.5 初始化列表 9.5.1 对象成员 代码&#xff1a; 9.5.2 初始化列表 9.5 初始化列表 9.5.1 对象成员 在类中定义的数据成员一般都是基本的数据类型。但是类中的成员也可以是对象&#xff0c;叫做对象成员。 先调用对象成员的构造函数&#xff0c;再调用本身的构造函数…

C# .NET平台提取PDF表格数据,并转换为txt、CSV和Excel表格文件

处理PDF文件中的内容是比较麻烦的事情&#xff0c;特别是以表格形式呈现的各种数据。为了充分利用这些宝贵的数据资源&#xff0c;我们可以通过程序提取PDF文件中的表格&#xff0c;并将其保存为更易于处理和分析的格式&#xff0c;如txt、csv、xlsx&#xff0c;从而更方便地对…

2024年口碑比较好的猫罐头有哪些?2024年口碑比较好的猫罐头盘点

想必铲屎官都知道给猫咪长期吃主食罐头的好处了吧&#xff01;主食罐头不仅营养丰富&#xff0c;还能让猫咪顺便补充水分。有时候猫咪食欲不佳&#xff0c;一罐主食罐头就能让它们胃口大开呢。 猫罐头侠登场&#xff01;养猫这么久了我就把我吃的不错的猫罐头分享一下&#xf…

银行测试:什么是银行数据治理?如何进行有效的银行领域的实际应用?

在数字化时代&#xff0c;数据已经成为银行的重要资产&#xff0c;而数据治理则是确保数据质量、安全性和可用性的关键。那么&#xff0c;什么是银行数据治理&#xff1f;为什么我们需要银行数据治理&#xff1f;又如何进行有效的银行数据治理呢&#xff1f;又有哪些数据治理技…

万界星空科技智能工厂主要建设模式

由于各个行业生产流程不同&#xff0c;加上各个行业智能化情况不同&#xff0c;智能工厂有以下几个不同的建设模式。 第一种模式&#xff1a;是从生产过程数字化到智能工厂 在石化、钢铁、冶金、建材、纺织、造纸、医药、食品等流程制造领域&#xff0c;企业发展智能制造的内在…

SIT75176B:3.0~5.5V 供电,32 节点,10Mbps 半双工 RS485/RS422 收发器

SIT75176B 是一款 3.0V~5.5V 电源供电、总线端口 ESD 保护能力 HBM 达到 15kV 以上、总 线耐压范围达到 15V 、半双工、低功耗&#xff0c;功能完全满足 TIA/EIA-485 标准要求的 RS-485 收发器&#xff0c; 最多允许 32 个节点同时连接到总线。 SIT75176B 包…

2023年个人工作总结怎么写?工作任务完成自动记录的待办软件

2023年已经接近尾声&#xff0c;不少人已经开始期待新的一年到来了。不过对于大多数职场人士来说&#xff0c;最近还有一项让人头疼的任务需要完成&#xff0c;这就是撰写2023年个人工作总结。 那么年度个人工作总结怎么写呢&#xff1f;其实很简单&#xff0c;年度工作总结一…

Linux 基础知识整理(三)

Linux文件和目录 Linux系统是一种典型的多用户系统&#xff0c;不同的用户有不一样的地位和权限。为了保护系统的安全性&#xff0c;Linux系统对不同的用户访问同一文件&#xff08;包括目录文件&#xff09;的权限做了不同的规定。 root权限最高&#xff0c;可以通过ls -l 或…

Temu数据软件:如何使用Temu数据软件优化您的Temu店铺运营

在如今竞争激烈的电商市场中&#xff0c;了解市场趋势、优化产品和店铺运营、了解竞争对手等方面的数据分析变得至关重要。为了帮助Temu平台上的商家更好地了解市场和消费者需求&#xff0c;提高运营效果&#xff0c;Temu数据软件成为了一项强大的工具。本文将介绍一些建议的Te…

连接池打满,导致页面夯住

连接池打满&#xff0c;导致页面夯住 1、背景生产环境中访问系统&#xff0c;页面延迟卡顿 2、排产思路 1&#xff09;、查看日志是排查问题的第一要素&#xff08;个人认为&#xff09;&#xff1b;查看日志发现使用com.alibaba.druid.pool设置最大连接数为100&#xff0c;已…

2024年天津财经大学珠江学院专升本专业课考试《经济学》考试大纲

天津财经大学珠江学院2024年高职升本科专业课考试《经济学》考试大纲 一、本大纲系天津财经大学珠江学院2024年高职升本科《经济学》课程考试大纲。所列考试范围出自郑健壮、王培才主编的教材《经济学基础&#xff08;第二版&#xff09;》&#xff0c;清华大学出版社&#xf…

独立开发者都使用了哪些技术栈?

目录 一、前言 架构展示&#xff1a; 技术栈展示&#xff1a; 二、JNPF-JAVA-Cloud微服务 1.后端技术栈 2. 前端技术栈 Vue3技术栈 3. 数据库支持 一、前言 像独立开发者这类人群&#xff0c;也可以把他们理解为个人开发者/自由职业者。有一组数据显示&#xff0c;在美国&#…

FL Studio21.3破解版水果编曲软件下载

电子编曲需要什么软件&#xff1f;市面上的宿主软件都可以完成电子编曲的工作&#xff0c;主要适用电子音乐风格编曲的宿主软件有FL Studio、Ableton Live等。电子编曲需要什么基础&#xff1f;需要对于电子音乐足够熟悉、掌握基础乐理知识以及宿主软件的使用方法。 就我个人的…

Canal笔记:安装与整合Springboot模式Mysql同步Redis

官方文档 https://github.com/alibaba/canal 使用场景 学习一件东西前&#xff0c;要知道为什么使用它。 1、同步mysql数据到redis 常规情况下&#xff0c;产生数据的方法可能有很多地方&#xff0c;那么就需要在多个地方中&#xff0c;都去做mysql数据同步到redis的处理&…

使用gunicorn部署django项目时,发现静态文件加载失败问题

本文主要介绍如何配置Niginx加载Django的静态资源文件&#xff0c;也就是Static 1、首先需要将Django项目中的Settings.py 文件中的两个参数做以下设置&#xff1a; STATIC_URL /static/ STATIC_ROOT os.path.join(BASE_DIR, static) 2、将 STATICFILES_DIRS [ os.p…

【C语言】超详解,让你C语言成功入门(五)——操作符

目录 1.算术操作符2.移位操作符2.1左移操作符<<2.2右移操作符>> 3.位操作符4.赋值操作符5.单目操作符5.1单目操作符介绍5.2sizeof 和 数组 6.关系操作符7.逻辑操作符8.条件操作符&#xff08;三目操作符&#xff09;9.逗号表达式10.下标引用、函数调用和结构体11.表…

2024 年甘肃省职业院校技能大赛中职组 电子与信息类“网络安全”赛项竞赛样题-C卷

2024 年甘肃省职业院校技能大赛中职组 电子与信息类“网络安全”赛项竞赛样题-C卷 2024 年甘肃省职业院校技能大赛中职组 电子与信息类“网络安全”赛项竞赛样题-C卷A模块基础设施设置/安全加固&#xff08;200分&#xff09;A 模块基础设施设置/安全加固&#xff08;200 分&am…

搜维尔科技:AI时代,迈向2030元宇宙数字人戏曲教育数字化思维、战略与未来!

一场关于中国传统戏曲与数字媒体交汇的探讨之旅将于今日在清华大学开讲&#xff0c;本次活动旨在推动AI时代大背景下&#xff0c;利用元宇宙、数字人等创新技术焕发中国传统戏曲全新活力。 讲座以“AI时代&#xff0c;迈向2030元宇宙数字人戏曲教育数字化思维、战略与未来”为主…