CAP BASE理论

news2025/9/20 17:22:26

CAP & BASE理论详解

CAP 理论

简介

CAP 也就是 Consistency(一致性)Availability(可用性)Partition Tolerance(分区容错性) 这三个单词首字母组合。

img

CAP 理论的提出者布鲁尔在提出 CAP 猜想的时候,并没有详细定义 ConsistencyAvailabilityPartition Tolerance 三个单词的明确定义。

因此,对于 CAP 的民间解读有很多,一般比较被大家推荐的是下面 👇 这种版本的解读。

在理论计算机科学中,CAP 定理(CAP theorem)指出对于一个分布式系统来说,当设计读写操作时,只能同时满足以下三点中的两个:

  • 一致性(Consistency) : 所有节点访问同一份最新的数据副本
  • 可用性(Availability): 非故障的节点在合理的时间内返回合理的响应(不是错误或者超时的响应)。
  • 分区容错性(Partition Tolerance) : 分布式系统出现网络分区的时候,仍然能够对外提供服务。

什么是网络分区?

分布式系统中,多个节点之间的网络本来是连通的,但是因为某些故障(比如部分节点网络出了问题)某些节点之间不连通了,整个网络就分成了几块区域,这就叫 网络分区

partition-tolerance

不是所谓的“3 选 2”

大部分人解释这一定律时,常常简单的表述为:“一致性、可用性、分区容忍性三者你只能同时达到其中两个,不可能同时达到”。实际上这是一个非常具有误导性质的说法,而且在 CAP 理论诞生 12 年之后,CAP 之父也在 2012 年重写了之前的论文。

当发生网络分区的时候,如果我们要继续服务,那么强一致性和可用性只能 2 选 1。也就是说当网络分区之后 P 是前提,决定了 P 之后才有 C 和 A 的选择。也就是说分区容错性(Partition tolerance)我们是必须要实现的。

简而言之就是:CAP 理论中分区容错性 P 是一定要满足的,在此基础上,只能满足可用性 A 或者一致性 C。

因此,分布式系统理论上不可能选择 CA 架构,只能选择 CP 或者 AP 架构。 比如 ZooKeeper、HBase 就是 CP 架构,Cassandra、Eureka 就是 AP 架构,Nacos 不仅支持 CP 架构也支持 AP 架构。

为啥不可能选择 CA 架构呢? 举个例子:若系统出现“分区”,系统中的某个节点在进行写操作。为了保证 C, 必须要禁止其他节点的读写操作,这就和 A 发生冲突了。如果为了保证 A,其他节点的读写操作正常的话,那就和 C 发生冲突了。

选择 CP 还是 AP 的关键在于当前的业务场景,没有定论,比如对于需要确保强一致性的场景如银行一般会选择保证 CP 。

另外,需要补充说明的一点是:如果网络分区正常的话(系统在绝大部分时候所处的状态),也就说不需要保证 P 的时候,C 和 A 能够同时保证。

CAP 实际应用案例

我这里以注册中心来探讨一下 CAP 的实际应用。考虑到很多小伙伴不知道注册中心是干嘛的,这里简单以 Dubbo 为例说一说。

下图是 Dubbo 的架构图。注册中心 Registry 在其中扮演了什么角色呢?提供了什么服务呢?

注册中心负责服务地址的注册与查找,相当于目录服务,服务提供者和消费者只在启动时与注册中心交互,注册中心不转发请求,压力较小。

img

常见的可以作为注册中心的组件有:ZooKeeper、Eureka、Nacos…。

  1. ZooKeeper 保证的是 CP。 任何时刻对 ZooKeeper 的读请求都能得到一致性的结果,但是, ZooKeeper 不保证每次请求的可用性比如在 Leader 选举过程中或者半数以上的机器不可用的时候服务就是不可用的。
  2. Eureka 保证的则是 AP。 Eureka 在设计的时候就是优先保证 A (可用性)。在 Eureka 中不存在什么 Leader 节点,每个节点都是一样的、平等的。因此 Eureka 不会像 ZooKeeper 那样出现选举过程中或者半数以上的机器不可用的时候服务就是不可用的情况。 Eureka 保证即使大部分节点挂掉也不会影响正常提供服务,只要有一个节点是可用的就行了。只不过这个节点上的数据可能并不是最新的。
  3. Nacos 不仅支持 CP 也支持 AP。

BASE 理论

简介

BASEBasically Available(基本可用)Soft-state(软状态)Eventually Consistent(最终一致性) 三个短语的缩写。BASE 理论是对 CAP 中一致性 C 和可用性 A 权衡的结果,其来源于对大规模互联网系统分布式实践的总结,是基于 CAP 定理逐步演化而来的,它大大降低了我们对系统的要求。

BASE 理论的核心思想

即使无法做到强一致性,但每个应用都可以根据自身业务特点,采用适当的方式来使系统达到最终一致性。

也就是牺牲数据的一致性来满足系统的高可用性,系统中一部分数据不可用或者不一致时,仍需要保持系统整体“主要可用”。

BASE 理论本质上是对 CAP 的延伸和补充,更具体地说,是对 CAP 中 AP 方案的一个补充。

BASE 理论三要素

BASE理论三要素

基本可用

基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性。但是,这绝不等价于系统不可用。

什么叫允许损失部分可用性呢?

  • 响应时间上的损失: 正常情况下,处理用户请求需要 0.5s 返回结果,但是由于系统出现故障,处理用户请求的时间变为 3 s。
  • 系统功能上的损失:正常情况下,用户可以使用系统的全部功能,但是由于系统访问量突然剧增,系统的部分非核心功能无法使用。
软状态

软状态指允许系统中的数据存在中间状态(CAP 理论中的数据不一致),并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时。

最终一致性

最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。

分布式一致性的 3 种级别:

  1. 强一致性:系统写入了什么,读出来的就是什么。
  2. 弱一致性:不一定可以读取到最新写入的值,也不保证多少时间之后读取到的数据是最新的,只是会尽量保证某个时刻达到数据一致的状态。
  3. 最终一致性:弱一致性的升级版,系统会保证在一定时间内达到数据一致的状态。

业界比较推崇是最终一致性级别,但是某些对数据一致要求十分严格的场景比如银行转账还是要保证强一致性。

那实现最终一致性的具体方式是什么呢?

  • 读时修复 : 在读取数据时,检测数据的不一致,进行修复。比如 Cassandra 的 Read Repair 实现,具体来说,在向 Cassandra 系统查询数据的时候,如果检测到不同节点的副本数据不一致,系统就自动修复数据。
  • 写时修复 : 在写入数据,检测数据的不一致时,进行修复。比如 Cassandra 的 Hinted Handoff 实现。具体来说,Cassandra 集群的节点之间远程写数据的时候,如果写失败 就将数据缓存下来,然后定时重传,修复数据的不一致性。
  • 异步修复 : 这个是最常用的方式,通过定时对账检测副本数据的一致性,并修复。

比较推荐 写时修复,这种方式对性能消耗比较低。

作者声明

如有问题,欢迎指正!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1278079.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LZW的编码和解码

不同于哈弗曼编码针对于每个元素编码,LZW主要针对字符串的编码优化,也就是把出现频率高的字符串压缩成一个字符表示,这也是大名鼎鼎的GIF采用的压缩格式。下面我将从三个角度谈谈我的一些理解,文章主要参考了这位大佬:…

灯光开不了了,是不是NVIDIA的问题

如果你跟我一样灯光亮度调节不了了,然后显示适配器又没有了,你看一下是不是和我这个大怨种一样把NVIDIA卸了,为了这个东西,这屏幕亮瞎我的眼镜😢😢。只需要进入官网,你就可以直接找到&#xff0…

浅析SD-WAN企业组网部署中简化网络运维的关键技术

网络已经成为现代企业不可或缺的基础设施,它为企业提供了连接全球的桥梁。随着全球化和数字化转型的加速推进,企业面临着越来越多的网络挑战和压力。传统的网络组网方式往往无法满足企业规模扩大、分支机构增多、上云服务等需求,导致网络性能…

005、简单页面-容器组件

之——布局 目录 之——布局 杂谈 正文 1.布局基础知识 2.Column 3.Row 4.实践 杂谈 布局容器组件。 一个丰富的页面需要很多组件组成,那么,我们如何才能让这些组件有条不紊地在页面上布局呢?这就需要借助容器组件来实现。 容器组件是…

深入理解Servlet(中)

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 上篇有一张图&#xff…

Istio可观测性

Istio可观测性 image-20231129072302901 前言 Istio 为网格内所有的服务通信生成详细的遥测数据。这种遥测技术提供了服务行为的可观测性,使运维人员能够排查故障、维护和优化应用程序,而不会给开发人员带来其他额外的负担。通过 Istio,运维…

(C语言)找出1-99之间的全部同构数

同构数&#xff1a;它出现在平方数的右边。例&#xff1a;5是25右边的数&#xff0c;25是625右边的数&#xff0c;即5和25均是同构数。 #include<stdio.h> int main() {for(int i 1;i < 100;i ){if((i*i % 10 i) || (i*i % 100 i))printf("%d\t%d\n",i,…

随堂复习(异常处理、多线程)

第09章&#xff1a;随堂复习&#xff08;异常处理&#xff09; 一、随堂复习 1. 异常的概述 1. 什么是异常&#xff1f; 指的是程序在执行过程中&#xff0c;出现的非正常情况&#xff0c;如果不处理最终会导致JVM的非正常停止。2. 异常的抛出机制 Java中把不同的异常用不同的…

【文献阅读】Joint Demosaicing and Denoising with Self Guidance

1. 摘要 近年来&#xff0c;一些神经网络在联合去马赛克和去噪(JDD)方面表现出了良好的效果。大多数算法首先将Bayer原始图像分解为四通道RGGB图像&#xff0c;然后将其输入神经网络。这种做法忽略了一个事实&#xff0c;即绿色通道的采样率是红色和蓝色通道的两倍。在本文中&…

【Unity入门】声音组件AudioSource简介及实现声音的近大远小

AudioSource组件 将需要播放声音的物体挂载Audio Listener组件&#xff0c;实现声音的播放 AudioSource组件属性 &#xff08;1&#xff09;AudioClip&#xff08;音频剪辑&#xff09;&#xff1a;指定播放的音频文件。 &#xff08;2&#xff09;Output&#xff08;音频输…

计算机网络扫盲(2)——网络边缘

一、概述 在计算机网络得到术语中&#xff0c;我们把与因特网相连的计算机或其他设备称为端系统&#xff08;或者主机&#xff09;&#xff0c;如下图所示&#xff0c;因为它们位于因特网的边缘&#xff0c;所以被称为端系统。因特网的端系统包括了桌面计算机&#xff…

yolov8模型 onnxruntime推理及可视化

参考:https://github.com/ultralytics/ultralytics/blob/main/examples/YOLOv8-ONNXRuntime/main.py 1、yolov8 onnxruntime推理代码 1)导出参考:https://blog.csdn.net/weixin_42357472/article/details/131412851 2)查看保存的模型onnx的输入格式等信息 登录https://n…

论文阅读——Img2LLM(cvpr2023)

arxiv&#xff1a;[2212.10846] From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models (arxiv.org) 一、介绍 使用大语言模解决VQA任务的方法大概两种&#xff1a;multi-modal pretraining and language-mediated VQA&#xff0c;即多模态预训练…

第一类瑞利索末菲标量衍射模型的方孔衍射的空间像计算(附python计算代码)

记第一类瑞利索末菲标量衍射模型的方孔衍射的空间像计算(附python计算代码) RS type 1 衍射空间像计算傅里叶变换采样条件实际计算计算要求傅立叶变换法计算直接卷积方法计算代码傅立叶变换方法直接卷积https://zhuanlan.zhihu.com/p/624292239 Goodman, J. W. (2004). Intro…

RHCE学习笔记(RHEL8) - RH294

Chapter Ⅰ 介绍Ansible ansible ansible是一款开源自动化平台 ansible围绕一种无代理架构构建&#xff0c;在控制节点上安装ansible&#xff0c;且客户端不需要任何特殊的代理软件&#xff1b;ansible使用SSH等标准协议连接受管主机&#xff0c;并在受管主机上运行代码或命令来…

http面试题,三次握手四次挥手

在浏览器中输入网址按下回车经历了一个怎样的过程&#xff1f; 总的来说分为以下几个过程&#xff1a; 1、DNS解析&#xff1a;将域名解析为IP地址; 2、TCP连接&#xff1a;TCP三次握手; 3、发生HTTP请求; 4、服务器处理请求并返回HTTP报文; 5、浏览器解析渲染页面; 6、断开连接…

Linux shell中的函数定义、传参和调用

Linux shell中的函数定义、传参和调用&#xff1a; 函数定义语法&#xff1a; [ function ] functionName [()] { } 示例&#xff1a; #!/bin/bash# get limit if [ $# -eq 1 ] && [ $1 -gt 0 ]; thenlimit$1echo -e "\nINFO: input limit is $limit" e…

文件操作-IO

文件操作-IO 1.认识文件1.什么是文件2.文件路径 2.java中操作文件2.1 File类的用法 3.InputStream和OutputStream的用法 1.认识文件 1.什么是文件 文件是计算机系统中用来存储数据的基本单位。它是一种用于持久性存储数据的命名、有序的数据集合.计算机系统通过文件系统来组织…

使用SpringBoot和ZXing实现二维码生成与解析

一、ZXing简介 ZXing是一个开源的&#xff0c;用Java实现的多种格式的1D/2D条码图像处理库。它包含了用于解析多种格式的1D/2D条形码的工具类&#xff0c;目标是能够对QR编码&#xff0c;Data Matrix, UPC的1D条形码进行解码。在二维码编制上&#xff0c;ZXing巧妙地利用构成计…

CPU 使用率和负载Load

优质博文&#xff1a;IT-BLOG-CN 一、CPU 使用率 CPU使用率是 CPU处理非空闲任务所花费的时间百分比 。例如单核CPU 1s内非空闲态运行时间为0.8s&#xff0c;那么它的CPU使用率就是80%&#xff1b;双核CPU 1s内非空闲态运行时间分别为0.4s和0.6s&#xff0c;那么&#xff0c;…