31 - MySQL调优之SQL语句:如何写出高性能SQL语句?

news2025/5/20 5:18:25

从今天开始,我将带你一起学习 MySQL 的性能调优。MySQL 数据库是互联网公司使用最为频繁的数据库之一,不仅仅因为它开源免费,MySQL 卓越的性能、稳定的服务以及活跃的社区都成就了它的核心竞争力。

我们知道,应用服务与数据库的交互主要是通过 SQL 语句来实现的。在开发初期,我们更加关注的是使用 SQL 实现业务功能,然而系统上线后,随着生产环境数据的快速增长,之前写的很多 SQL 语句就开始暴露出性能问题。

在这个阶段中,我们应该尽量避免一些慢 SQL 语句的实现。但话说回来,SQL 语句慢的原因千千万,除了一些常规的慢 SQL 语句可以直接规避,其它的一味去规避也不是办法,我们还要学会如何去分析、定位到其根本原因,并总结一些常用的 SQL 调优方法,以备不时之需。

那么今天我们就重点看看慢 SQL 语句的几种常见诱因,从这点出发,找到最佳方法,开启高性能 SQL 语句的大门。

1、慢 SQL 语句的几种常见诱因

1.1、无索引、索引失效导致慢查询

如果在一张几千万数据的表中以一个没有索引的列作为查询条件,大部分情况下查询会非常耗时,这种查询毫无疑问是一个慢 SQL 查询。所以对于大数据量的查询,我们需要建立适合的索引来优化查询。

虽然我们很多时候建立了索引,但在一些特定的场景下,索引还有可能会失效,所以索引失效也是导致慢查询的主要原因之一。

1.2、锁等待

我们常用的存储引擎有 InnoDB 和 MyISAM,前者支持行锁和表锁,后者只支持表锁。

如果数据库操作是基于表锁实现的,试想下,如果一张订单表在更新时,需要锁住整张表,那么其它大量数据库操作(包括查询)都将处于等待状态,这将严重影响到系统的并发性能。

这时,InnoDB 存储引擎支持的行锁更适合高并发场景。但在使用 InnoDB 存储引擎时,我们要特别注意行锁升级为表锁的可能。在批量更新操作时,行锁就很可能会升级为表锁。

MySQL 认为如果对一张表使用大量行锁,会导致事务执行效率下降,从而可能造成其它事务长时间锁等待和更多的锁冲突问题发生,致使性能严重下降,所以 MySQL 会将行锁升级为表锁。还有,行锁是基于索引加的锁,如果我们在更新操作时,条件索引失效,那么行锁也会升级为表锁。

因此,基于表锁的数据库操作,会导致 SQL 阻塞等待,从而影响执行速度。在一些更新操作(insert\update\delete)大于或等于读操作的情况下,MySQL 不建议使用 MyISAM 存储引擎。

除了锁升级之外,行锁相对表锁来说,虽然粒度更细,并发能力提升了,但也带来了新的问题,那就是死锁。因此,在使用行锁时,我们要注意避免死锁。

1.3、不恰当的 SQL 语句

使用不恰当的 SQL 语句也是慢 SQL 最常见的诱因之一。例如,习惯使用 SQL 语句在大数据表中使用 分页查询,以及对非索引字段进行排序等等。

2、优化 SQL 语句的步骤

通常,我们在执行一条 SQL 语句时,要想知道这个 SQL 先后查询了哪些表,是否使用了索引,这些数据从哪里获取到,获取到数据遍历了多少行数据等等,我们可以通过 EXPLAIN 命令来查看这些执行信息。这些执行信息被统称为执行计划。

2.1、通过 EXPLAIN 分析 SQL 执行计划

假设现在我们使用 EXPLAIN 命令查看当前 SQL 是否使用了索引,先通过 SQL EXPLAIN 导出相应的执行计划如下:

下面对图示中的每一个字段进行一个说明,从中你也能收获到很多零散的知识点。

  • id:每个执行计划都有一个 id,如果是一个联合查询,这里还将有多个 id。
  • select_type:表示 SELECT 查询类型,常见的有 SIMPLE(普通查询,即没有联合查询、子查询)、PRIMARY(主查询)、UNION(UNION 中后面的查询)、SUBQUERY(子查询)等。
  • table:当前执行计划查询的表,如果给表起别名了,则显示别名信息。
  • partitions:访问的分区表信息。
  • type:表示从表中查询到行所执行的方式,查询方式是 SQL 优化中一个很重要的指标,结果值从好到差依次是:system > const > eq_ref > ref > range > index > ALL。

img

  • system/const:表中只有一行数据匹配,此时根据索引查询一次就能找到对应的数据。如果是 B + 树索引,我们知道此时索引构造成了多个层级的树,当查询的索引在树的底层时,查询效率就越低。const 表示此时索引在第一层,只需访问一层便能得到数据。

img

  • eq_ref:使用唯一索引扫描,常见于多表连接中使用主键和唯一索引作为关联条件。

img

  • ref:非唯一索引扫描,还可见于唯一索引最左原则匹配扫描。

img

  • range:索引范围扫描,比如,<,>,between 等操作。

img

  • index:索引全表扫描,此时遍历整个索引树。

img

  • ALL:表示全表扫描,需要遍历全表来找到对应的行。
  • possible_keys:可能使用到的索引。
  • key:实际使用到的索引。
  • key_len:当前使用的索引的长度。
  • ref:关联 id 等信息。
  • rows:查找到记录所扫描的行数。
  • filtered:查找到所需记录占总扫描记录数的比例。
  • Extra:额外的信息。

2.2、通过 Show Profile 分析 SQL 执行性能

上述通过 EXPLAIN 分析执行计划,仅仅是停留在分析 SQL 的外部的执行情况,如果我们想要深入到 MySQL 内核中,从执行线程的状态和时间来分析的话,这个时候我们就可以选择 Profile。

Profile 除了可以分析执行线程的状态和时间,还支持进一步选择 ALL、CPU、MEMORY、BLOCK IO、CONTEXT SWITCHES 等类型来查询 SQL 语句在不同系统资源上所消耗的时间。以下是相关命令的注释:

SHOW PROFILE [type [, type] ... ]
[FOR QUERY n]
[LIMIT row_count [OFFSET offset]]
 
type 参数:
| ALL:显示所有开销信息
| BLOCK IO:阻塞的输入输出次数
| CONTEXT SWITCHES:上下文切换相关开销信息
| CPU:显示 CPU 的相关开销信息 
| IPC:接收和发送消息的相关开销信息
| MEMORY :显示内存相关的开销,目前无用
| PAGE FAULTS :显示页面错误相关开销信息
| SOURCE :列出相应操作对应的函数名及其在源码中的调用位置 (行数) 
| SWAPS:显示 swap 交换次数的相关开销信息

值得注意的是,MySQL 是在 5.0.37 版本之后才支持 Show Profile 功能的,如果你不太确定的话,可以通过 select @@have_profiling 查询是否支持该功能,如下图所示:

img

最新的 MySQL 版本是默认开启 Show Profile 功能的,但在之前的旧版本中是默认关闭该功能的,你可以通过 set 语句在 Session 级别开启该功能:

img

Show Profiles 只显示最近发给服务器的 SQL 语句,默认情况下是记录最近已执行的 15 条记录,我们可以重新设置 profiling_history_size 增大该存储记录,最大值为 100。

img

获取到 Query_ID 之后,我们再通过 Show Profile for Query ID 语句,就能够查看到对应 Query_ID 的 SQL 语句在执行过程中线程的每个状态所消耗的时间了:

img

通过以上分析可知:SELECT COUNT(*) FROM order; SQL 语句在 Sending data 状态所消耗的时间最长,这是因为在该状态下,MySQL 线程开始读取数据并返回到客户端,此时有大量磁盘 I/O 操作。

3、常用的 SQL 优化

在使用一些常规的 SQL 时,如果我们通过一些方法和技巧来优化这些 SQL 的实现,在性能上就会比使用常规通用的实现方式更加优越,甚至可以将 SQL 语句的性能提升到另一个数量级。

3.1、优化分页查询

通常我们是使用 + 合适的 order by 来实现分页查询,这种实现方式在没有任何索引条件支持的情况下,需要做大量的文件排序操作(file sort),性能将会非常得糟糕。如果有对应的索引,通常刚开始的分页查询效率会比较理想,但越往后,分页查询的性能就越差。

这是因为我们在使用 LIMIT 的时候,偏移量 M 在分页越靠后的时候,值就越大,数据库检索的数据也就越多。例如 LIMIT 10000,10 这样的查询,数据库需要查询 10010 条记录,最后返回 10 条记录。也就是说将会有 10000 条记录被查询出来没有被使用到。

我们模拟一张 10 万数量级的 order 表,进行以下分页查询:

select * from `demo`.`order` order by order_no limit 10000, 20;

通过 EXPLAIN 分析可知:该查询使用到了索引,扫描行数为 10020 行,但所用查询时间为 0.018s,相对来说时间偏长了。

img

img

  • 利用子查询优化分页查询

以上分页查询的问题在于,我们查询获取的 10020 行数据结果都返回给我们了,我们能否先查询出所需要的 20 行数据中的最小 ID 值,然后通过偏移量返回所需要的 20 行数据给我们呢?我们可以通过索引覆盖扫描,使用子查询的方式来实现分页查询:

select * from `demo`.`order` where id> (select id from `demo`.`order` order by order_no limit 10000, 1)  limit 20;

通过 EXPLAIN 分析可知:子查询遍历索引的范围跟上一个查询差不多,而主查询扫描了更多的行数,但执行时间却减少了,只有 0.004s。这就是因为返回行数只有 20 行了,执行效率得到了明显的提升。

img

img

3.2、优化 SELECT COUNT(*)

COUNT() 是一个聚合函数,主要用来统计行数,有时候也用来统计某一列的行数量(不统计 NULL 值的行)。我们平时最常用的就是 COUNT(*) 和 COUNT(1) 这两种方式了,其实两者没有明显的区别,在拥有主键的情况下,它们都是利用主键列实现了行数的统计。

但 COUNT() 函数在 MyISAM 和 InnoDB 存储引擎所执行的原理是不一样的,通常在没有任何查询条件下的 COUNT(*),MyISAM 的查询速度要明显快于 InnoDB。

这是因为 MyISAM 存储引擎记录的是整个表的行数,在 COUNT(*) 查询操作时无需遍历表计算,直接获取该值即可。而在 InnoDB 存储引擎中就需要扫描表来统计具体的行数。而当带上 where 条件语句之后,MyISAM 跟 InnoDB 就没有区别了,它们都需要扫描表来进行行数的统计。

如果对一张大表经常做 SELECT COUNT(*) 操作,这肯定是不明智的。那么我们该如何对大表的 COUNT() 进行优化呢?

  • 使用近似值

有时候某些业务场景并不需要返回一个精确的 COUNT 值,此时我们可以使用近似值来代替。我们可以使用 EXPLAIN 对表进行估算,要知道,执行 EXPLAIN 并不会真正去执行查询,而是返回一个估算的近似值。

  • 增加汇总统计

如果需要一个精确的 COUNT 值,我们可以额外新增一个汇总统计表或者缓存字段来统计需要的 COUNT 值,这种方式在新增和删除时有一定的成本,但却可以大大提升 COUNT() 的性能。

3.3、优化 SELECT *

我曾经看过很多同事习惯在只查询一两个字段时,都使用 select * from table where xxx 这样的 SQL 语句,这种写法在特定的环境下会存在一定的性能损耗。

MySQL 常用的存储引擎有 MyISAM 和 InnoDB,其中 InnoDB 在默认创建主键时会创建主键索引,而主键索引属于聚族索引,即在存储数据时,索引是基于 B + 树构成的,具体的行数据则存储在叶子节点。

而 MyISAM 默认创建的主键索引、二级索引以及 InnoDB 的二级索引都属于非聚族索引,即在存储数据时,索引是基于 B + 树构成的,而叶子节点存储的是主键值。

假设我们的订单表是基于 InnoDB 存储引擎创建的,且存在 order_no、status 两列组成的组合索引。此时,我们需要根据订单号查询一张订单表的 status,如果我们使用 select * from order where order_no=‘xxx’来查询,则先会查询组合索引,通过组合索引获取到主键 ID,再通过主键 ID 去主键索引中获取对应行所有列的值。

如果我们使用 select order_no, status from order where order_no=‘xxx’来查询,则只会查询组合索引,通过组合索引获取到对应的 order_no 和 status 的值。如果你对这些索引还不够熟悉,请重点关注之后的第 34 讲,那一讲会详述数据库索引的相关内容。

4、总结

在开发中,我们要尽量写出高性能的 SQL 语句,但也无法避免一些慢 SQL 语句的出现,或因为疏漏,或因为实际生产环境与开发环境有所区别,这些都是诱因。面对这种情况,我们可以打开慢 SQL 配置项,记录下都有哪些 SQL 超过了预期的最大执行时间。首先,我们可以通过以下命令行查询是否开启了记录慢 SQL 的功能,以及最大的执行时间是多少:

Show variables like 'slow_query%';
Show variables like 'long_query_time';

如果没有开启,我们可以通过以下设置来开启:

set global slow_query_log='ON'; // 开启慢 SQL 日志
set global slow_query_log_file='/var/lib/mysql/test-slow.log';// 记录日志地址
set global long_query_time=1;// 最大执行时间

除此之外,很多数据库连接池中间件也有分析慢 SQL 的功能。总之,我们要在编程中避免低性能的 SQL 操作出现,除了要具备一些常用的 SQL 优化技巧之外,还要充分利用一些 SQL 工具,实现 SQL 性能分析与监控。

5、思考题

假设有一张订单表 order,主要包含了主键订单编码 order_no、订单状态 status、提交时间 create_time 等列,并且创建了 status 列索引和 create_time 列索引。此时通过创建时间降序获取状态为 1 的订单编码,以下是具体实现代码:

select order_no from order where status =1 order by create_time desc

你知道其中的问题所在吗?我们又该如何优化?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1257136.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C语言:写一个函数,实现3*3矩阵的转置(指针)

分析&#xff1a; 在主函数 main 中&#xff0c;定义一个 3x3 的整型数组 a&#xff0c;并定义一个指向整型数组的指针 p。然后通过循环结构和 scanf 函数&#xff0c;从标准输入中读取用户输入的 3x3 矩阵的值&#xff0c;并存储到数组 a 中。 接下来&#xff0c;调用 mov…

MySQL的undo log 与MVCC

文章目录 概要一、undo日志1.undo日志的作用2.undo日志的格式3. 事务id&#xff08;trx_id&#xff09; 二、MVCC1.版本链2.ReadView3.REPEATABLE READ —— 在第一次读取数据时生成一个ReadView4.快照读与当前读 小结 概要 Undo Log&#xff1a;数据库事务开始之前&#xff0…

构建SQL Server链接服务器:实现跨服务器数据访问及整合

点击上方蓝字关注我 在SQL Server数据库管理中&#xff0c;链接服务器是一项强大的功能&#xff0c;允许在一个SQL Server实例中访问另一个SQL Server实例的数据。这种功能为数据库管理员提供了灵活性&#xff0c;使其能够跨不同服务器进行数据交互&#xff0c;开辟了更多的应用…

realname,soname和linkname

背景 当在看/lib下的一些文件时候&#xff0c;我们发现几乎都是三个动态库文件&#xff0c;为啥&#xff1f; 分析 当我发布一个动态库的时候&#xff0c;比如版本是maj.min.patch&#xff08;10.2.1&#xff09;的格式&#xff0c;当我改了小版本的号的时候&#xff08;10…

牛客网刷题笔记四 链表节点k个一组翻转

NC50 链表中的节点每k个一组翻转 题目&#xff1a; 思路&#xff1a; 这种题目比较习惯现在草稿本涂涂画画链表处理过程。整体思路是赋值新的链表&#xff0c;用游离指针遍历原始链表进行翻转操作&#xff0c;当游离个数等于k时&#xff0c;就将翻转后的链表接到新的链表后&am…

【Flutter 常见问题系列 第 1 篇】Text组件 文字的对齐、数字和字母对齐中文

TextStyle中设置height参数即可 对齐的效果 Text的高度 是根据 height 乘于 fontSize 进行计算的、这里指定heiht即可、不指定的会出现 无法对齐的情况&#xff0c;如下&#xff1a; 这种就是无法对齐的情况

成为AI产品经理——模型评估(混淆矩阵)

一、混淆矩阵 1.混淆矩阵的介绍 混淆矩阵有两个定义positive&#xff08;正例&#xff09;和negative&#xff08;反例&#xff09;。分别代表模型结果的好和坏。 下图就是一个分类问题的混淆矩阵。横行代表真实的情况&#xff0c;而竖行代表预测的结果。 为了便于理解&…

原神「神铸赋形」活动祈愿现已开启

亲爱的旅行者&#xff0c;「神铸赋形」活动祈愿现已开启&#xff0c;「单手剑静水流涌之辉」「法器碧落之珑」概率UP&#xff01; 活动期间&#xff0c;旅行者可以在「神铸赋形」活动祈愿中获得更多武器与角色&#xff0c;提升队伍的战斗力&#xff01; 〓祈愿时间〓 4.2版本更…

VS2022 17.8: Build Insights 中的函数视图

简述 今天&#xff0c;我们很高兴的宣布在 Visual Studio 中为 Build Insights 新增了一项新功能&#xff1a;函数视图&#xff08;Functions View&#xff09;。 此功能在 Visual Studio 2022 v17.8 版本中可用。函数视图可以为你的代码库中的函数和强制内联&#xff08;For…

C++学习之路(四)C++ 实现简单的待办事项列表命令行应用 - 示例代码拆分讲解

本期示例介绍: 本期示例《待办事项列表应用》展示了一个简单的任务管理系统&#xff0c;用户可以通过命令行界面执行添加任务、删除任务和显示任务列表等操作。 功能描述&#xff1a; 添加任务功能&#xff1a; 用户可以输入任务描述&#xff0c;将新的任务添加到任务列表中。…

基于SpringBoot+Vue的蛋糕商城【源码好优多】

简介 蛋糕商城首页、注册、登录、浏览商品、购物车、下单、收藏商品、个人中心、管理员登录、角色管理、日志管理、菜单管理、轮播图管理、商品类别管理、商品管理、用户管理、订单管理、收货地址管理等功能模块。 项目目录 数据库 首页 用户注册 登录 商品详情 个人信息 购物车…

【第二节:微信小程序 app.json配置】微信小程序入门,以思维导图的方式展开2

以思维导图的方式呈现出来&#xff0c;是不是会更加直观一些呢 如果看不清楚&#xff0c;私信给单发 &#xff1a; 第二节&#xff1a;微信小程序 app.json配置&#xff1a; 包括&#xff1a; window pages tabBar networkTimeout debug 如下图所示&#xff1a; 2、ap…

常见树种(贵州省):022绣线菊、月月青、金合欢、胡枝子、白刺花

摘要&#xff1a;本专栏树种介绍图片来源于PPBC中国植物图像库&#xff08;下附网址&#xff09;&#xff0c;本文整理仅做交流学习使用&#xff0c;同时便于查找&#xff0c;如有侵权请联系删除。 图片网址&#xff1a;PPBC中国植物图像库——最大的植物分类图片库 一、绣线菊…

linux之下安装 nacos

1 下载地址 也可使用在线下载wget https://github.com/alibaba/nacos/releases/download/1.4.6/nacos-server-1.4.6.tar.gzTags alibaba/nacos GitHuban easy-to-use dynamic service discovery, configuration and service management platform for building cloud nativ…

SWT/Jface(3): 表格中添加超链接

背景 实际业务中经常需要展示某个网站, 并且希望在展示的时候单击网站可直接访问, 本节演示在表格中如何添加超链接支持. 需求 假设我需要渲染一个Study类, 它只有三个属性id,name和website, 其中id只支持展示, name只支持编辑, 而website只支持单击时跳转到相应的网站, 效果…

软件介绍02- flameshot截图软件(linux系统可用)

1 软件介绍 在Windows和mac平台一直都使用着snipaste截图&#xff0c;非常好用&#xff0c;又能够钉图。遗憾是并没有开发linux版本&#xff0c;真不知道为什么。 好在终于找到一款截图软件&#xff0c;flameshot截图软件&#xff0c;可以平替snipaste。 下载网址&#xff1a;…

kali linux英文改中文

如果英语基础较好的同学可以不用调整 反之则需要 找到终端&#xff08;就是输入命令的那个地方 如下&#xff09;点击它出现命令终端 切换为root用户&#xff0c;命令为&#xff1a; sudo dpkg-reconfigure locales 然后回车 找到这个zh_CN 然后回车 鼠标下键选中并且回车 输…

【RTP】1: RTPSenderAudio::SendAudio

RTPSenderAudio 可以将一个opus帧封装为rtp包进行发送,以下是其过程:RTPSenderAudio::SendAudio :只需要提供payload部分 创建RtpPacketToSend 并写入各个部分 填充payload部分 sender 本身分配全session唯一的twcc序号 if (!rtp_sender_->

Linux系统---僵尸进程、孤儿进程

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C/C》 键盘敲烂&#xff0c;年薪百万&#xff01; 有了上一篇博客的学习&#xff0c;我们已经简单了解了进程的基础知识&#xff0c;今天我们再来学习两个特殊的进程&#xff0c;僵尸进程和孤儿进程。 …

【STL】string类 (下)

目录 1&#xff0c;insert 2&#xff0c;erase 3&#xff0c;find 4&#xff0c;replace 5&#xff0c;rfind 6&#xff0c;substr 7&#xff0c;find_first_of 8&#xff0c;find_first_not_of 9&#xff0c;find_last_of 10&#xff0c;operator 11&#xff0c;ge…