2017年五一杯数学建模B题自媒体时代的消息传播问题解题全过程文档及程序

news2025/6/9 23:52:05

2017年五一杯数学建模

B题 自媒体时代的消息传播问题

原题再现

  电视剧《人民的名义》中人物侯亮平说:“现在是自媒体时代,任何突发性事件几分钟就传播到全世界。”相对于传统媒体,以互联网技术为基础的自媒体以其信息传播的即时性、交往方式的平等性和交往身份的虚拟性等特点,已经成为公民获取信息、表达情感与思想、参与社会公共生活的重要载体,并逐渐渗透到政治、经济、文化、社会等诸多领域。
  结合实际情况,建立数学模型,解决以下问题:
  问题 1:建立一条消息在自媒体平台上传播的数学模型,并以“中共中央、国务院决定设立河北雄安新区”这条消息为例,分析其传播过程。
  问题 2:某条消息在自媒体传播的过程中,如果出现了新的与之高度关联的消息(例如相关单位或知名人士发布了新的消息),建立数学模型,分析并说明新消息出现后传播过程的变化情况。
  问题 3:请建立数学模型分析(1)不同类型的消息在自媒体传播过程中是否存在差异?(2) 同一消息在不同自媒体平台上传播是否存在差异?并通过数值算例进行验证。
  问题 4:结合所建立的模型,写一份分析报告,阐述你对自媒体时代消息传播的见解或看法,并进一步提出自媒体平台管理的建议。

整体求解过程概述(摘要)

  新媒体的诞生标志着信息的传递进入了一个全新的时代,各类信息间的相互渗透,媒体平台间的交叉传递,拉近人与人间的距离,无时无刻地影响着人们生活方式。
  本文就信息的传递方式及过程展开研究,主要解决了信息如何在实际生活中传递的问题,并针对与之高度关联信息出现时的对其传播带来的影响,给出了其最优化影响的处理方案,同时考虑信息自身的类型及媒体平台的差异,结合数据分别分析了其各自影响,最后依据所得结论,提出了一份关于新媒体消息传播及管理的报告。
  针对问题一,我们基于传统传染病传播模型,就 SNS 网络建立一种新型 SEIR模型,将消息传播过程中不同职能的媒体平台化作不同节点,分别分析其在实际传播过程中的变化过程,多角度地揭示了实际消息传播的过程。
  针对问题二,依据高度相似消息的出现,我们沿用问题一传染病传播的思想,建立基于节点属性和信息内容等多个因素,对信息传播概率和传播延迟两个目标变量建立细粒度的模型,具体分析了新消息对原消息传播带来的影响并求解出最大化影响的条件。
  针对问题三,我们建立元胞自动机模型仿真不同信息类型对传播带来的影响,并给出两者间的关系,结果表明受用户欢迎度高的消息具备更广泛的辐射范围及更快的传播速率。对于不同类型的媒体平台,我们建立一种新型 LWCS 模型考量平台类型与消息传播的关系,经数据分析得出平台的类型仅与传播过程中速率相关,同时我们还证明了该指标相对于其他指标的正确性及优越性。
  针对问题四,我们梳理前三问中所得结论,就自媒体平台管理的现状,给出切实可行的改进建议。

模型假设:

  1.假设在某条消息传播过程不受自然因素影响;
  2.假设消息传播过程不受政策的影响;
  3.假设各个自媒体平台之间相互独立;
  4.假设不同类型信息间不存在竞争;
  5.假设网络中每个节点本身具有一定的权重。

问题分析:

  问题一的分析
  新媒体时代的信息传播的不是简单的图论网络,还要实际情况,显然鉴于信息的特殊性质,可以将信息类比于流行性传染疾病的传播。但这还是远远不够的,所以在此基础上我们建立一种新型的 SEIR 模型,更加细分传播过程中媒体平台的职能,最后利用 MATLAB 对设立的偏微分方程进行求解。
  问题二的分析
  为探究新高度关联消息对原信息的影响,我们必须先分析新信息的特征,为此,沿用问题一的思想我们建立了基于节点和信息传播特征的网络信息的传播模型,鉴于问题二的情况提取出两个主影响因子,得出节点间传播速率与新信息的关系,并利用问题一中的模型得出了节点间传播速率与整体信息传播点密度的关系,进行分析比较可得出影响其重要因素。
  问题三的分析
  针对不同类型的数据,必然有着不同的节点传播速率,在此基础上我们利用元胞自动机进行仿真,改变每次仿真时的节点传播速率,并对数据数据分析。对于不同类型的媒体平台,我们没有选用传统的单一指标,而是建立了一符合LWCS 模型作为评价标准,我们利用问题一中的模型对其进行检验的一方面验证了其正确性,另一方面证明其较与其他指标的优越性,并利用所得的结果进行分析。
  问题四的分析
  对于问题四,可根据前三个问题所建立的模型及其结论,针对其存在的问题对自媒体平台管理提出切实可行的建议。

模型的建立与求解整体论文缩略图

在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:(代码和文档not free)

function y=prsir(t,x,theta,eta,alpha,k)
theta=0.5;lambda=0.5;h=2;d=0.5;
eta=theta*(1-(1-lambda).^(h*d));
w=0.5;rho=2;epsilon=1;
alpha=w./(1+exp(rho-epsilon*t));
k=14;
y=[-theta*k*x(1)*x(2),eta*k*x(1)*x(2)-alpha*k*x(2)*(x(2)+x(3)),al
pha*k*x(2)*(x(2)+x(3))+(theta-eta)*k*x(1)*x(2)]';
% Command Window
ts=0:0.5:10;
x0=[4999/5000,1/5000,0];
[t,x]=ode45('prsir',ts,x0);[t,x]
plot(t,x(:,1),'rs-',t,x(:,2),'b*-',t,x(:,3),'go-'),grid,
xlabel('t');ylabel('PR-SIR模型中三类节点密度
');legend('I(t)','S(t)','R(t)');
title('\theta=0.5,\lambda=0.5,h=2,d=0.5,w=0.5,\rho=2,\epsilon=1')
分析 d 变化对传播节点的影响:
% prsira.m
function y=prsira(t,x,theta,eta,alpha,k)
w=0.5;rho=2;epsilon=1;
alpha=w./(1+exp(rho-epsilon*t));
y=[-theta*k*x(1)*x(2),eta*k*x(1)*x(2)-alpha*k*x(2)*(x(2)+x(3)),al
pha*k*x(2)*(x(2)+x(3))+(theta-eta)*k*x(1)*x(2)]';
% Command Window
ts=0:0.5:10;
theta=0.5;
lambda=0.5;
h=2;
d=0.2;
eta=theta*(1-(1-lambda).^(h*d));
k=14;
x0=[4999/5000,1/5000,0];
[t,x]=ode45(@(t,x) prsira(t,x,theta,eta,alpha,k),ts,x0);[t,x]
plot(t,x(:,2),'g*-'),grid,
hold on
ts=0:0.5:10;
theta=0.5;
lambda=0.5;
h=2;
d=0.4;
eta=theta*(1-(1-lambda).^(h*d));
k=14;
x0=[4999/5000,1/5000,0];
[t,x]=ode45(@(t,x) prsira(t,x,theta,eta,alpha,k),ts,x0);[t,x]
plot(t,x(:,2),'r*-'),grid,
hold on
ts=0:0.5:10;
theta=0.5;
lambda=0.5;
h=2;
d=0.6;
eta=theta*(1-(1-lambda).^(h*d));
k=14;
x0=[4999/5000,1/5000,0];
[t,x]=ode45(@(t,x) prsira(t,x,theta,eta,alpha,k),ts,x0);[t,x]
plot(t,x(:,2),'c*-'),grid,
hold on
ts=0:0.5:10;
theta=0.5;
lambda=0.5;
h=2;
d=0.8;
eta=theta*(1-(1-lambda).^(h*d));
k=14;
x0=[4999/5000,1/5000,0];
[t,x]=ode45(@(t,x) prsira(t,x,theta,eta,alpha,k),ts,x0);[t,x]
plot(t,x(:,2),'m*-'),grid,
grid on
xlabel('t');ylabel('传播节点密度
S(t)');legend('d=0.2','d=0.4','d=06','d=0.8');
title('\theta=0.5,\lambda=0.5,h=2,w=0.5,\rho=2,\epsilon=1')
function y=prsir(t,x,theta,eta,alpha,k)
w=0.5;rho=2;epsilon=1;
alpha=w./(1+exp(rho-epsilon*t));
k=14;
y=[-theta*k*x(1)*x(2),eta*k*x(1)*x(2)-alpha*k*x(2)*(x(2)+x(3)),al
pha*k*x(2)*(x(2)+x(3))+(theta-eta)*k*x(1)*x(2)]';
% Command Window
ts1=0:0.5:2;
theta=0.5;lambda=0.5;h=2;d=0.5;
eta=theta*(1-(1-lambda).^(h*d));
x0=[4999/5000,1/5000,0];
[t,x]=ode45('prsir',ts1,x0);[t,x]
plot(t,x(:,2),'b*-','linewidth',2),grid,
hold on
ts2=2:0.5:8;
theta=0.5;lambda=0.5;h=4;d=0.5;
eta=theta*(1-(1-lambda).^(h*d));
x0=[4999/5000,1/5000,0];
[t,x]=ode45('prsir',ts2,x0);[t,x]
plot(t,x(:,2),'r*-','linewidth',2),grid,
grid on
xlabel('t');ylabel('传播节点密度S(t)');legend('h=2','h=4');
title('\theta=0.5,\lambda=0.5,d=0.5,w=0.5,\rho=2,\epsilon=1')
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1255396.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

x大网校登录接口js逆向分析

网站: import base64 # 解码 result base64.b64decode(aHR0cHM6Ly91c2VyLndhbmd4aWFvLmNuL2xvZ2lu.encode(utf-8)) websiteresult.decode(utf-8) # print(result) print(website)思路: 模拟登录,得到token值,才能对内部数据进行…

【YOLOv5入门】目标检测

【大家好,我是爱干饭的猿,本文重点介绍YOLOv5入门-目标检测的任务、性能指标、yolo算法基本思想、yolov5网络架构图。 后续会继续分享其他重要知识点总结,如果喜欢这篇文章,点个赞👍,关注一下吧】 上一篇…

利用 LD_PRELOAD 环境变量

文章目录 原理LD_PRELOAD介绍如何上传.so文件 例题 [虎符CTF 2022]ezphp 原理 LD_PRELOAD介绍 LD_PRELOAD是Linux系统的一个环境变量,它可以影响程序的运行时的链接(Runtime linker),它允许你定义在程序运行前优先加载的动态链接…

系列十九、Spring实例化bean的方式

一、概述 所谓实例化bean,大白话讲就是Spring如何把这一个个的普通的Java对象创建为Spring bean的。 二、方式 Spring中实例化bean常用的有以下四种,即: ① 构造器方式; ② 静态工厂方式; ③ 实例工厂方式;…

c语言实现10进制转16进制

代码如下&#xff1a; #define _CRT_SECURE_NO_WARNINGS #include <stdio.h>int dectohex(int b, char array[]) {char a[17] { "0123456789ABCDEF" };int c[30] { 0 }, i 0, base 16, j 0;while (b){c[i] b % base;b b / base;}j i;for (i--; i >…

steam/csgo搬砖项目真能月入过万吗?到底真的假的

steam/csgo搬砖第三课之如何出售 steam搬砖核心原理是什么&#xff1f;为什么会有差价产生&#xff1f;buff不是更低价吗&#xff1f;很多小白会有这些疑问&#xff01; steam搬砖指的是通过买卖csgo游戏装备赚钱的。 玩过游戏的应该就很清楚&#xff0c;像绝地求生&#xff…

数据结构——带头循环双向链表(List)

1、带头双向循环链表介绍 在上一篇博客中我们提到了链表有三个特性&#xff0c;可以组合成为8种不同类型的链表。单链表是其中比较重要的一种&#xff0c;那么这次我们选择和带头双向循环链表会会面&#xff0c;这样我们就见识过了所有三种特性的呈现。 带头双向循环链表&#…

qt pdf 模块简介

文章目录 1. 技术平台2. Qt pdf 模块3. cmake 使用模块4. 许可证5. 简单示例5.1 CMakeLists.txt5.2 main.cpp 6. 总结 1. 技术平台 项目说明OSwin10 x64Qt6.6compilermsvc2022构建工具cmake 2. Qt pdf 模块 Qt PDF模块包含用于呈现PDF文档的类和函数。 QPdfDocument 类加载P…

Python基础:字符串详解(需补充完善)

1. 字符串定义 在Python中&#xff0c;字符串是一种数据类型&#xff0c;用于表示文本数据。字符串是由字符组成的序列&#xff0c;可以包含字母、数字、符号和空格等字符。在Python中&#xff0c;你可以使用单引号&#xff08;&#xff09;或双引号&#xff08;"&#x…

SpringBoot 拦截器高级篇

Springboot 拦截器 定义使用场景拦截器与过滤器的区别实现步骤全局拦截器的局限性全局拦截器VS局部拦截器局部拦截器自定义局部拦截器使用多个局部拦截器 定义 拦截器是Spring MVC框架中的一个重要组件&#xff0c;它是一种AOP&#xff08;面向切面编程&#xff09;的实现方式&…

汽车租聘管理与推荐系统Python+Django网页界面+协同过滤推荐算法

一、介绍 汽车租聘管理与推荐系统。本系统使用Python作为主要编程语言&#xff0c;前端采用HTML、CSS、BootStrap等技术搭建前端界面&#xff0c;后端采用Django框架处理用户的请求。创新点&#xff1a;使用协同过滤推荐算法实现对当前用户个性化推荐。 其主要功能如下&#x…

lua的gc原理

lua垃圾回收(Garbage Collect)是lua中一个比较重要的部分。由于lua源码版本变迁&#xff0c;目前大多数有关这个方面的文章都还是基于lua5.1版本&#xff0c;有一定的滞后性。因此本文通过参考当前的5.3.4版本的Lua源码&#xff0c;希望对Lua的GC算法有一个较为详尽的探讨。 L…

4.前端--HTML标签-表格列表表单【2023.11.25】

1.表格 1.1表格的作用 表格的作用&#xff1a;表格主要用于显示、展示数据 1.2表格的基本格式 <table><tr><td>单元格内的文字</td><td>单元格内的文字</td>...</tr>... </table><table> </table> 是用于定义表…

【C++】类和对象——拷贝构造和赋值运算符重载

上一篇我们讲了构造函数&#xff0c;就是对象实例化时会自动调用&#xff0c;那么&#xff0c;我们这里的拷贝构造在形式上是构造函数的一个重载&#xff0c;拷贝构造其实也是一种构造函数&#xff0c;那么我们就可以引出这里的规则 1.拷贝构造函数的函数名必须与类名相同。 2.…

vue3+tsx的使用

<template><div><xiaoman on-click"getItem" name"似懂非懂"></xiaoman></div> </template><script setup langts>import xiaoman from "./App"const getItem(item:any)>{console.log(item,it…

Java多线程二-线程安全

1、线程安全问题 多个线程&#xff0c;同时操作同一个共享资源的时候&#xff0c;可能会出现业务安全问题。 2、实例&#xff1a;取钱的线程安全问题 2.1、场景 小明和小红是夫妻&#xff0c;他们有个共同账户&#xff0c;余额是十万元&#xff0c;如果两人同时取钱并且各自取…

Bytebase 2.11.1 - 数据脱敏支持语义类型和脱敏算法

&#x1f680; 新功能 数据脱敏支持自定义脱敏算法和语义类型。 &#x1f514; 重大变更 用户页面的 URL 由 /u/{uid} 变更为 /users/{email}。工作空间的所有者和开发者分别更名为&#xff1a;管理员和成员。 &#x1f384; 改进 SQL 编辑器支持显示表的 DDL 语句&#…

【Unity基础】8.简单场景的搭建

【Unity基础】8.简单场景的搭建 大家好&#xff0c;我是Lampard~~ 欢迎来到Unity基础系列博客&#xff0c;所学知识来自B站阿发老师~感谢 &#xff08;一&#xff09;场景资源 &#xff08;1&#xff09;Import资源包 今天我们将手动去搭一个简单的场景&#xff0c;当…

HONOR荣耀MagicBook 15 2021款 锐龙版R5(BMH-WFQ9HN)原厂Windows11预装OEM系统含F10智能还原

链接&#xff1a;https://pan.baidu.com/s/1faYtC5BIDC2lsV_JSMI96A?pwdj302 提取码&#xff1a;j302 原厂系统Windows11.22H2工厂模式安装包,含F10一键智能还原&#xff0c;自带所有驱动、出厂主题壁纸、系统属性专属LOGO标志、Office办公软件、荣耀 电脑管家等预装程序 …

SQL JOIN 子句:合并多个表中相关行的完整指南

SQL JOIN JOIN子句用于基于它们之间的相关列合并来自两个或更多表的行。 让我们看一下“Orders”表的一部分选择&#xff1a; OrderIDCustomerIDOrderDate1030821996-09-1810309371996-09-1910310771996-09-20 然后&#xff0c;看一下“Customers”表的一部分选择&#xff…