目录
效果
模型信息
项目
代码
下载
效果

图片源自网络侵删
模型信息
Inputs
 -------------------------
 name:x
 tensor:Float[1, 3, 192, 192]
 ---------------------------------------------------------------
Outputs
 -------------------------
 name:tf.identity
 tensor:Float[1, 192, 192, 2]
 ---------------------------------------------------------------
项目
VS2022
.net framework 4.8
OpenCvSharp 4.8
Microsoft.ML.OnnxRuntime 1.16.2

代码
using Microsoft.ML.OnnxRuntime.Tensors;
 using Microsoft.ML.OnnxRuntime;
 using OpenCvSharp;
 using System;
 using System.Collections.Generic;
 using System.Windows.Forms;
 using System.Linq;
 using System.Drawing;
namespace Onnx_Demo
 {
     public partial class frmMain : Form
     {
         public frmMain()
         {
             InitializeComponent();
         }
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
         string image_path = "";
        DateTime dt1 = DateTime.Now;
         DateTime dt2 = DateTime.Now;
float conf_threshold = 0.9f;
        int inpWidth;
         int inpHeight;
int outHeight, outWidth;
Mat image;
string model_path = "";
        SessionOptions options;
         InferenceSession onnx_session;
         Tensor<float> input_tensor;
         List<NamedOnnxValue> input_ontainer;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
         DisposableNamedOnnxValue[] results_onnxvalue;
        private void button1_Click(object sender, EventArgs e)
         {
             OpenFileDialog ofd = new OpenFileDialog();
             ofd.Filter = fileFilter;
             if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
             pictureBox2.Image = null;
             textBox1.Text = "";
            image_path = ofd.FileName;
             pictureBox1.Image = new System.Drawing.Bitmap(image_path);
             image = new Mat(image_path);
         }
        private void Form1_Load(object sender, EventArgs e)
         {
             // 创建输入容器
             input_ontainer = new List<NamedOnnxValue>();
            // 创建输出会话
             options = new SessionOptions();
             options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
             options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
            // 创建推理模型类,读取本地模型文件
             model_path = "model/model_float32.onnx";
            inpHeight = 192;
             inpWidth = 192;
            outHeight = 192;
             outWidth = 192;
onnx_session = new InferenceSession(model_path, options);
            // 创建输入容器
             input_ontainer = new List<NamedOnnxValue>();
            image_path = "test_img/1.jpg";
             pictureBox1.Image = new Bitmap(image_path);
}
        private unsafe void button2_Click(object sender, EventArgs e)
         {
             if (image_path == "")
             {
                 return;
             }
             textBox1.Text = "检测中,请稍等……";
             pictureBox2.Image = null;
             System.Windows.Forms.Application.DoEvents();
image = new Mat(image_path);
            Mat resize_image = new Mat();
             Cv2.Resize(image, resize_image, new OpenCvSharp.Size(inpWidth, inpHeight));
            float[] input_tensor_data = new float[1 * 3 * inpWidth * inpHeight];
             int row = resize_image.Rows;
             int col = resize_image.Cols;
             for (int c = 0; c < 3; c++)
             {
                 for (int i = 0; i < inpHeight; i++)
                 {
                     for (int j = 0; j < inpWidth; j++)
                     {
                         byte pix = ((byte*)(resize_image.Ptr(i).ToPointer()))[j * 3 + c];
                         input_tensor_data[c * row * col + i * col + j] = (float)((pix / 255.0-0.5)/0.5);
                     }
                 }
             }
input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 1, 3, inpHeight, inpWidth });
            //将 input_tensor 放入一个输入参数的容器,并指定名称
             input_ontainer.Add(NamedOnnxValue.CreateFromTensor("x", input_tensor));
            dt1 = DateTime.Now;
             //运行 Inference 并获取结果
             result_infer = onnx_session.Run(input_ontainer);
             dt2 = DateTime.Now;
            //将输出结果转为DisposableNamedOnnxValue数组
             results_onnxvalue = result_infer.ToArray();
float[] mask = results_onnxvalue[0].AsTensor<float>().ToArray();
Mat mask_out = new Mat(outHeight, outWidth, MatType.CV_32FC2, mask);
Cv2.Resize(mask_out, mask_out, new OpenCvSharp.Size(image.Cols, image.Rows));
Mat result_image = image.Clone();
            for (int h = 0; h < result_image.Rows; h++)
             {
                 for (int w = 0; w < result_image.Cols; w++)
                 {
                     float pix = mask_out.At<float>(h, w);
                     if (pix > conf_threshold)
                     {
                         Vec3b vec3B = result_image.At<Vec3b>(h, w);
                        vec3B.Item0 = 0;
                         vec3B.Item1 = 255;
                         vec3B.Item2 = 0;
                        result_image.Set<Vec3b>(h, w, vec3B);
                     }
                 }
             }
            if (pictureBox2.Image != null)
             {
                 pictureBox2.Image.Dispose();
             }
            pictureBox2.Image = new System.Drawing.Bitmap(result_image.ToMemoryStream());
             textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
            mask_out.Dispose();
             image.Dispose();
             resize_image.Dispose();
             result_image.Dispose();
         }
        private void pictureBox2_DoubleClick(object sender, EventArgs e)
         {
             Common.ShowNormalImg(pictureBox2.Image);
         }
        private void pictureBox1_DoubleClick(object sender, EventArgs e)
         {
             Common.ShowNormalImg(pictureBox1.Image);
         }
     }
 }
using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Linq;
using System.Drawing;
namespace Onnx_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        float conf_threshold = 0.9f;
        int inpWidth;
        int inpHeight;
        int outHeight, outWidth;
        Mat image;
        string model_path = "";
        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_ontainer;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";
            image_path = ofd.FileName;
            pictureBox1.Image = new System.Drawing.Bitmap(image_path);
            image = new Mat(image_path);
        }
        private void Form1_Load(object sender, EventArgs e)
        {
            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();
            // 创建输出会话
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
            // 创建推理模型类,读取本地模型文件
            model_path = "model/model_float32.onnx";
            inpHeight = 192;
            inpWidth = 192;
            outHeight = 192;
            outWidth = 192;
            onnx_session = new InferenceSession(model_path, options);
            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();
            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
        }
        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            System.Windows.Forms.Application.DoEvents();
            image = new Mat(image_path);
            Mat resize_image = new Mat();
            Cv2.Resize(image, resize_image, new OpenCvSharp.Size(inpWidth, inpHeight));
            float[] input_tensor_data = new float[1 * 3 * inpWidth * inpHeight];
            int row = resize_image.Rows;
            int col = resize_image.Cols;
            for (int c = 0; c < 3; c++)
            {
                for (int i = 0; i < inpHeight; i++)
                {
                    for (int j = 0; j < inpWidth; j++)
                    {
                        byte pix = ((byte*)(resize_image.Ptr(i).ToPointer()))[j * 3 + c];
                        input_tensor_data[c * row * col + i * col + j] = (float)((pix / 255.0-0.5)/0.5);
                    }
                }
            }
            input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 1, 3, inpHeight, inpWidth });
            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("x", input_tensor));
            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_ontainer);
            dt2 = DateTime.Now;
            //将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();
            float[] mask = results_onnxvalue[0].AsTensor<float>().ToArray();
            Mat mask_out = new Mat(outHeight, outWidth, MatType.CV_32FC2, mask);
            Cv2.Resize(mask_out, mask_out, new OpenCvSharp.Size(image.Cols, image.Rows));
            Mat result_image = image.Clone();
            for (int h = 0; h < result_image.Rows; h++)
            {
                for (int w = 0; w < result_image.Cols; w++)
                {
                    float pix = mask_out.At<float>(h, w);
                    if (pix > conf_threshold)
                    {
                        Vec3b vec3B = result_image.At<Vec3b>(h, w);
                        vec3B.Item0 = 0;
                        vec3B.Item1 = 255;
                        vec3B.Item2 = 0;
                        result_image.Set<Vec3b>(h, w, vec3B);
                    }
                }
            }
            if (pictureBox2.Image != null)
            {
                pictureBox2.Image.Dispose();
            }
            pictureBox2.Image = new System.Drawing.Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
            mask_out.Dispose();
            image.Dispose();
            resize_image.Dispose();
            result_image.Dispose();
        }
        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }
        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}
下载
源码下载



















