目录
常规求解:
矩阵求解
sklean算法求解
# 二元一次方程 # x + y = 14 # 2x - y = 10
常规求解:

    x = np.array([[1,1],[2,-1]])
    print(x)
# [[ 1  1]
#  [ 2 -1]]
    y = np.array([14, 10])
    w = np.linalg.solve(x, y)
    print('正常求救:')
    print(w)
# [8. 6.]矩阵求解



print(x.T)
    # y = w0.x1 + w1 .x2
    # w = (xt.x)-1 . (xt.y)
    A = x.T.dot(x)
    print(A)
    # 逆矩阵
    B = np.linalg.inv(A)
    print("B is :")
    print(B)
    re = B.dot(x.T).dot(y)
    print('矩阵求救:')
    print(re)
sklean算法求解
    # fit_intercept 不计算截距
    model = LinearRegression(fit_intercept=False)
    f = model.fit(x,y)
    print("sklean算法求救:")
    # coef 斜率
    print(model.coef_)
import numpy as np
from sklearn.linear_model  import LinearRegression
# pip install -U scikit-learn
# 正规方程
# 二元一次方程
#   x + y = 14
#   2x - y = 10
if __name__ == '__main__':
    x = np.array([[1,1],[2,-1]])
    print(x)
# [[ 1  1]
#  [ 2 -1]]
    y = np.array([14, 10])
    w = np.linalg.solve(x, y)
    print('正常求救:')
    print(w)
# [8. 6.]
    print(x.T)
    # y = w0.x1 + w1 .x2
    # w = (xt.x)-1 . (xt.y)
    A = x.T.dot(x)
    print(A)
    # 逆矩阵
    B = np.linalg.inv(A)
    print("B is :")
    print(B)
    re = B.dot(x.T).dot(y)
    print('矩阵求救:')
    print(re)
# sklean算法
    # fit_intercept 不计算截距
    model = LinearRegression(fit_intercept=False)
    f = model.fit(x,y)
    print("sklean算法求救:")
    # coef 斜率
    print(model.coef_)
参考地址:
【【整整600集】北大教授196小时讲完的AI人工智能从入门到项目实战全套教程,全程干货无废话!学完变大佬!这还学不会我退出IT圈!机器学习/深度学习/神经网络】https://www.bilibili.com/video/BV14a4y1V7YJ?p=7&vd_source=ecc1a37e826c1af0f62b6e24cdc3af26



















