IS-LM模型:从失衡到均衡的模拟
 
  
  文章目录
 
  - IS-LM模型:从失衡到均衡的模拟
- @[toc]
-  
          
           
            
            
              1 
             
            
              I 
             
            
              S 
             
            
              − 
             
            
              L 
             
            
              M 
             
            
           
             1 IS-LM 
            
           
         1IS−LM模型
- 2 数值模拟
- 2.1 长期均衡解
- 2.2 政府部门引入
- 2.3 价格水平影响
- 2.4 随机扰动因素
 
 
 
文章目录
- IS-LM模型:从失衡到均衡的模拟
- @[toc]
- 1 I S − L M 1 IS-LM 1IS−LM模型
- 2 数值模拟
- 2.1 长期均衡解
- 2.2 政府部门引入
- 2.3 价格水平影响
- 2.4 随机扰动因素
 
 
1 I S − L M 1 IS-LM 1IS−LM模型
 
     
      
       
       
         I 
        
       
         S 
        
       
         − 
        
       
         L 
        
       
         M 
        
       
      
        IS-LM 
       
      
    IS−LM是产品市场和货币市场共同均衡时的模型,它由两条曲线构成,分别是 
     
      
       
       
         I 
        
       
         S 
        
       
      
        IS 
       
      
    IS曲线和 
     
      
       
       
         L 
        
       
         M 
        
       
      
        LM 
       
      
    LM曲线。其中 
     
      
       
       
         I 
        
       
         S 
        
       
      
        IS 
       
      
    IS曲线是在产品市场均衡(产品服务供给等于需求、计划支出等于实际支出、计划投资等于储蓄、非计划存货等于0)条件下,均衡实际收入 
     
      
       
       
         Y 
        
       
      
        Y 
       
      
    Y与实际利率 
     
      
       
       
         r 
        
       
      
        r 
       
      
    r之间的反向变化关系; 
     
      
       
       
         L 
        
       
         M 
        
       
      
        LM 
       
      
    LM曲线是在货币市场均衡(货币供给等于货币需求)条件下,均衡实际利率 
     
      
       
       
         r 
        
       
      
        r 
       
      
    r与实际收入 
     
      
       
       
         Y 
        
       
      
        Y 
       
      
    Y之间的正向变化关系。用方程表示为
  
      
       
        
        
          { 
         
         
          
           
            
             
             
               Y 
              
             
               = 
              
             
               C 
              
             
               ( 
              
             
               Y 
              
             
               ) 
              
             
               + 
              
             
               I 
              
             
               ( 
              
             
               r 
              
             
               ) 
              
             
            
           
          
          
           
            
             
             
               L 
              
             
               ( 
              
             
               r 
              
             
               , 
              
             
               Y 
              
             
               ) 
              
             
               = 
              
             
               M 
              
             
               / 
              
             
               P 
              
             
            
           
          
         
        
       
         \left\{\begin{array}{l} Y=C(Y)+I(r)\\ L(r,Y)=M/P \end{array}\right. 
        
       
     {Y=C(Y)+I(r)L(r,Y)=M/P
 其中 
     
      
       
       
         Y 
        
       
         = 
        
       
         C 
        
       
         ( 
        
       
         Y 
        
       
         ) 
        
       
         + 
        
       
         I 
        
       
         ( 
        
       
         r 
        
       
         ) 
        
       
      
        Y=C(Y)+I(r) 
       
      
    Y=C(Y)+I(r)为产品市场均衡条件(计划支出=实际支出)。消费 
     
      
       
       
         C 
        
       
         ( 
        
       
         Y 
        
       
         ) 
        
       
      
        C(Y) 
       
      
    C(Y)是关于收入 
     
      
       
       
         Y 
        
       
      
        Y 
       
      
    Y的函数,假设是线性的:
  
      
       
        
        
          C 
         
        
          ( 
         
        
          Y 
         
        
          ) 
         
        
          = 
         
        
          α 
         
        
          + 
         
        
          β 
         
        
          Y 
         
        
       
         C(Y)=\alpha+\beta Y 
        
       
     C(Y)=α+βY
 其中 
     
      
       
       
         β 
        
       
         ∈ 
        
       
         ( 
        
       
         0 
        
       
         , 
        
       
         1 
        
       
         ) 
        
       
      
        \beta\in(0,1) 
       
      
    β∈(0,1)称为边际消费倾向, 
     
      
       
       
         α 
        
       
         > 
        
       
         0 
        
       
      
        \alpha>0 
       
      
    α>0为自主消费,即没有收入时的消费。在资本边际效率不变时,投资 
     
      
       
       
         I 
        
       
         ( 
        
       
         r 
        
       
         ) 
        
       
      
        I(r) 
       
      
    I(r)是关于利率 
     
      
       
       
         r 
        
       
      
        r 
       
      
    r的递减函数,假设也是线性的:
  
      
       
        
        
          I 
         
        
          ( 
         
        
          r 
         
        
          ) 
         
        
          = 
         
        
          e 
         
        
          − 
         
        
          d 
         
        
          r 
         
        
       
         I(r)=e-dr 
        
       
     I(r)=e−dr
 其中 
     
      
       
       
         e 
        
       
         > 
        
       
         0 
        
       
      
        e>0 
       
      
    e>0是自发投资, 
     
      
       
       
         d 
        
       
      
        d 
       
      
    d是投资对利率的敏感程度。于是产品市场均衡条件可记作
  
      
       
        
        
          Y 
         
        
          = 
         
        
          α 
         
        
          + 
         
        
          β 
         
        
          Y 
         
        
          + 
         
        
          e 
         
        
          − 
         
        
          d 
         
        
          r 
         
        
       
         Y=\alpha+\beta Y+e-dr 
        
       
     Y=α+βY+e−dr
 
     
      
       
       
         L 
        
       
         ( 
        
       
         r 
        
       
         , 
        
       
         Y 
        
       
         ) 
        
       
      
        L(r,Y) 
       
      
    L(r,Y)为实际货币需求,它是由 
     
      
       
        
        
          L 
         
        
          1 
         
        
       
         ( 
        
       
         Y 
        
       
         ) 
        
       
      
        L_1(Y) 
       
      
    L1(Y)需求和 
     
      
       
        
        
          L 
         
        
          2 
         
        
       
         ( 
        
       
         r 
        
       
         ) 
        
       
      
        L_2(r) 
       
      
    L2(r)需求构成。 
     
      
       
        
        
          L 
         
        
          1 
         
        
       
         ( 
        
       
         Y 
        
       
         ) 
        
       
      
        L_1(Y) 
       
      
    L1(Y)由交易性需求和预防性需求构成,随收入 
     
      
       
       
         Y 
        
       
      
        Y 
       
      
    Y增加而增加,不妨假定为正比例函数
  
      
       
        
         
         
           L 
          
         
           1 
          
         
        
          ( 
         
        
          Y 
         
        
          ) 
         
        
          = 
         
        
          k 
         
        
          Y 
         
        
       
         L_1(Y)=kY 
        
       
     L1(Y)=kY
 其中 
     
      
       
       
         k 
        
       
      
        k 
       
      
    k表示用于支付日常开支(交易性需求)和未来不确定性(预防性需求)占实际收入的比重。 
     
      
       
        
        
          L 
         
        
          2 
         
        
       
         ( 
        
       
         r 
        
       
         ) 
        
       
      
        L_2(r) 
       
      
    L2(r)需求称为投机性需求,它是关于实际利率的递减函数,假设为负比例函数:
  
      
       
        
         
         
           L 
          
         
           2 
          
         
        
          ( 
         
        
          r 
         
        
          ) 
         
        
          = 
         
        
          A 
         
        
          − 
         
        
          h 
         
        
          r 
         
        
       
         L_2(r)=A-hr 
        
       
     L2(r)=A−hr
 其中 
     
      
       
       
         A 
        
       
         > 
        
       
         0 
        
       
      
        A>0 
       
      
    A>0是参数, 
     
      
       
       
         h 
        
       
      
        h 
       
      
    h表示 
     
      
       
        
        
          L 
         
        
          2 
         
        
       
      
        L_2 
       
      
    L2对利率 
     
      
       
       
         r 
        
       
      
        r 
       
      
    r变化的敏感程度。 
     
      
       
       
         M 
        
       
      
        M 
       
      
    M表示名义货币供给, 
     
      
       
       
         P 
        
       
      
        P 
       
      
    P表示价格水平, 
     
      
       
       
         M 
        
       
         / 
        
       
         P 
        
       
      
        M/P 
       
      
    M/P表示实际货币供给。货币市场均衡条件可以记作
  
      
       
        
        
          k 
         
        
          Y 
         
        
          + 
         
        
          A 
         
        
          − 
         
        
          h 
         
        
          r 
         
        
          = 
         
        
          M 
         
        
          / 
         
        
          P 
         
        
       
         kY+A-hr=M/P 
        
       
     kY+A−hr=M/P
 我们将上述两个模型重新写在一起
  
      
       
        
        
          { 
         
         
          
           
            
             
             
               Y 
              
             
               = 
              
             
               α 
              
             
               + 
              
             
               β 
              
             
               Y 
              
             
               + 
              
             
               e 
              
             
               − 
              
             
               d 
              
             
               r 
              
             
            
           
          
          
           
            
             
             
               k 
              
             
               Y 
              
             
               + 
              
             
               A 
              
             
               − 
              
             
               h 
              
             
               r 
              
             
               = 
              
             
               M 
              
             
               / 
              
             
               P 
              
             
            
           
          
         
        
       
         \left\{\begin{array}{l} Y=\alpha+\beta Y+e-dr\\ kY+A-hr=M/P \end{array}\right. 
        
       
     {Y=α+βY+e−drkY+A−hr=M/P
 将 
     
      
       
       
         r 
        
       
         , 
        
       
         Y 
        
       
      
        r,Y 
       
      
    r,Y视为内生变量,两个方程组可以解出唯一均衡值,记作 
     
      
       
       
         ( 
        
        
        
          r 
         
        
          ∗ 
         
        
       
         , 
        
        
        
          Y 
         
        
          ∗ 
         
        
       
         ) 
        
       
      
        (r^*,Y^*) 
       
      
    (r∗,Y∗)。其中 
     
      
       
        
        
          r 
         
        
          ∗ 
         
        
       
      
        r^* 
       
      
    r∗称为均衡实际利率, 
     
      
       
        
        
          Y 
         
        
          ∗ 
         
        
       
      
        Y^* 
       
      
    Y∗称为均衡实际收入,或均衡国民收入。从几何上看,也就是这两条直线的交点。
然而,初始的实际收入和实际利率并不是均衡的,很有可能并不在上述两条直线的交点处,例如下图 
     
      
       
        
        
          E 
         
        
          ′ 
         
        
       
      
        E' 
       
      
    E′, 
     
      
       
        
        
          E 
         
         
         
           ′ 
          
         
           ′ 
          
         
        
       
      
        E'' 
       
      
    E′′和 
     
      
       
        
        
          E 
         
         
         
           ′ 
          
         
           ′ 
          
         
           ′ 
          
         
        
       
      
        E''' 
       
      
    E′′′。
 
假设初始状态在 E ′ ′ ′ E''' E′′′,此时计划投资大于储蓄 I > S I>S I>S,实际收入 Y Y Y增加,实际利率 r r r增加,即 E ′ ′ ′ E''' E′′′点即向右移动,又向上移动,合力为右上方,直至进入 I I II II区域。在 I I II II区域中, I < S I<S I<S,实际收入减少,于是向左移动; L > M L>M L>M,实际利率继续向上移动,合力为左上方,此时进入 I I I区域。在 I I I区域, Y Y Y减少, r r r降低,合力在左下方,进入 I V IV IV区域。在 I V IV IV区域, Y Y Y增加, r r r降低,进入 I I I III III区域,于是重新回到 I I I III III区域。但每次都与均衡点 E E E不断接近。
为了使上述模型动态化,引入时间因素 
     
      
       
       
         t 
        
       
      
        t 
       
      
    t,于是
  
      
       
        
        
          { 
         
         
          
           
            
             
              
              
                C 
               
              
                t 
               
              
             
               = 
              
             
               α 
              
             
               + 
              
             
               β 
              
              
              
                Y 
               
              
                t 
               
              
             
            
           
          
          
           
            
             
              
              
                I 
               
              
                t 
               
              
             
               = 
              
             
               e 
              
             
               − 
              
             
               d 
              
              
              
                r 
               
              
                t 
               
              
             
            
           
          
          
           
            
             
              
              
                Y 
               
               
               
                 t 
                
               
                 + 
                
               
                 1 
                
               
              
             
               = 
              
              
              
                C 
               
              
                t 
               
              
             
               + 
              
              
              
                I 
               
              
                t 
               
              
             
            
           
          
          
           
            
             
             
               k 
              
              
              
                Y 
               
              
                t 
               
              
             
               + 
              
             
               A 
              
             
               − 
              
             
               h 
              
              
              
                r 
               
               
               
                 t 
                
               
                 + 
                
               
                 1 
                
               
              
             
               = 
              
             
               M 
              
             
               / 
              
             
               P 
              
             
            
           
          
         
        
       
         \left\{\begin{array}{l} C_t = \alpha+\beta Y_t\\ I_t=e-dr_t\\ Y_{t+1}= C_t+I_t\\ kY_t+A-hr_{t+1}=M/P \end{array}\right. 
        
       
     ⎩ 
              ⎨ 
              ⎧Ct=α+βYtIt=e−drtYt+1=Ct+ItkYt+A−hrt+1=M/P
 整理得到
  
      
       
        
        
          { 
         
         
          
           
            
             
              
              
                C 
               
              
                t 
               
              
             
               = 
              
             
               α 
              
             
               + 
              
             
               β 
              
              
              
                Y 
               
              
                t 
               
              
             
            
           
          
          
           
            
             
              
              
                I 
               
              
                t 
               
              
             
               = 
              
             
               e 
              
             
               − 
              
             
               d 
              
              
              
                r 
               
              
                t 
               
              
             
            
           
          
          
           
            
             
              
              
                Y 
               
               
               
                 t 
                
               
                 + 
                
               
                 1 
                
               
              
             
               = 
              
              
              
                C 
               
              
                t 
               
              
             
               + 
              
              
              
                I 
               
              
                t 
               
              
             
            
           
          
          
           
            
             
              
              
                r 
               
               
               
                 t 
                
               
                 + 
                
               
                 1 
                
               
              
             
               = 
              
             
               ( 
              
             
               k 
              
              
              
                Y 
               
              
                t 
               
              
             
               + 
              
             
               A 
              
             
               − 
              
             
               M 
              
             
               / 
              
             
               P 
              
             
               ) 
              
             
               / 
              
             
               h 
              
             
            
           
          
         
        
       
         \left\{\begin{array}{l} C_t = \alpha+\beta Y_t\\ I_t=e-dr_t\\ Y_{t+1}= C_t+I_t\\ r_{t+1} = (kY_t+A-M/P)/h \end{array}\right. 
        
       
     ⎩ 
              ⎨ 
              ⎧Ct=α+βYtIt=e−drtYt+1=Ct+Itrt+1=(kYt+A−M/P)/h
在长期中,非均衡逐渐向均衡靠拢, 
     
      
       
        
        
          r 
         
        
          t 
         
        
       
         ≈ 
        
        
        
          r 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
         ≈ 
        
        
        
          r 
         
        
          ∗ 
         
        
       
      
        r_t\approx r_{t+1} \approx r^* 
       
      
    rt≈rt+1≈r∗, 
     
      
       
        
        
          Y 
         
        
          t 
         
        
       
         ≈ 
        
        
        
          Y 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
         ≈ 
        
        
        
          Y 
         
        
          ∗ 
         
        
       
      
        Y_t\approx Y_{t+1}\approx Y^* 
       
      
    Yt≈Yt+1≈Y∗,于是
  
      
       
        
        
          { 
         
         
          
           
            
             
              
              
                C 
               
              
                ∗ 
               
              
             
               = 
              
             
               α 
              
             
               + 
              
             
               β 
              
              
              
                Y 
               
              
                ∗ 
               
              
             
            
           
          
          
           
            
             
              
              
                I 
               
              
                ∗ 
               
              
             
               = 
              
             
               e 
              
             
               − 
              
             
               d 
              
              
              
                r 
               
              
                ∗ 
               
              
             
            
           
          
          
           
            
             
              
              
                Y 
               
              
                ∗ 
               
              
             
               = 
              
              
              
                C 
               
              
                ∗ 
               
              
             
               + 
              
              
              
                I 
               
              
                ∗ 
               
              
             
            
           
          
          
           
            
             
              
              
                r 
               
              
                ∗ 
               
              
             
               = 
              
             
               ( 
              
             
               k 
              
              
              
                Y 
               
              
                ∗ 
               
              
             
               + 
              
             
               A 
              
             
               − 
              
             
               M 
              
             
               / 
              
             
               P 
              
             
               ) 
              
             
               / 
              
             
               h 
              
             
            
           
          
         
        
       
         \left\{\begin{array}{l} C^* = \alpha+\beta Y^*\\ I^*=e-dr^*\\ Y^*= C^*+I^*\\ r^* = (kY^*+A-M/P)/h \end{array}\right. 
        
       
     ⎩ 
              ⎨ 
              ⎧C∗=α+βY∗I∗=e−dr∗Y∗=C∗+I∗r∗=(kY∗+A−M/P)/h
 使用行列式求解得到长期均衡点为
  
      
       
        
        
          { 
         
         
          
           
            
             
              
              
                r 
               
              
                ∗ 
               
              
             
               = 
              
              
               
                
                
                  k 
                 
                
                  ( 
                 
                
                  α 
                 
                
                  + 
                 
                
                  e 
                 
                
                  ) 
                 
                
                  + 
                 
                
                  ( 
                 
                
                  1 
                 
                
                  − 
                 
                
                  β 
                 
                
                  ) 
                 
                
                  ( 
                 
                
                  A 
                 
                
                  − 
                 
                
                  M 
                 
                
                  / 
                 
                
                  P 
                 
                
                  ) 
                 
                
                
                
                  k 
                 
                
                  d 
                 
                
                  + 
                 
                
                  h 
                 
                
                  ( 
                 
                
                  1 
                 
                
                  − 
                 
                
                  β 
                 
                
                  ) 
                 
                
               
              
             
            
           
          
          
           
            
             
              
              
                Y 
               
              
                ∗ 
               
              
             
               = 
              
              
               
                
                
                  h 
                 
                
                  ( 
                 
                
                  α 
                 
                
                  + 
                 
                
                  e 
                 
                
                  ) 
                 
                
                  − 
                 
                
                  d 
                 
                
                  ( 
                 
                
                  A 
                 
                
                  − 
                 
                
                  M 
                 
                
                  / 
                 
                
                  P 
                 
                
                  ) 
                 
                
                
                
                  k 
                 
                
                  d 
                 
                
                  + 
                 
                
                  h 
                 
                
                  ( 
                 
                
                  1 
                 
                
                  − 
                 
                
                  β 
                 
                
                  ) 
                 
                
               
              
             
            
           
          
         
        
       
         \left\{\begin{array}{l} r^* = \dfrac{k(\alpha+e)+(1-\beta)(A-M/P)}{kd+h(1-\beta)} \\ Y^* = \dfrac{h(\alpha+e)-d(A-M/P)}{kd+h(1-\beta)} \\ \end{array}\right. 
        
       
     ⎩ 
              ⎨ 
              ⎧r∗=kd+h(1−β)k(α+e)+(1−β)(A−M/P)Y∗=kd+h(1−β)h(α+e)−d(A−M/P)
2 数值模拟
2.1 长期均衡解
令参数 α = 500 \alpha=500 α=500, β = 0.5 \beta=0.5 β=0.5, e = 1250 e=1250 e=1250, d = 250 d=250 d=250, k = 0.5 k=0.5 k=0.5, h = 250 h=250 h=250, A = 1000 A=1000 A=1000, M = 1250 M=1250 M=1250, P = 1 P=1 P=1,代入上述均衡解得到
alpha = 500
beta = 0.5
e = 1250
d = 250
k = 0.5
h = 250
A = 1000
M = 1250
P = 1
r_star = (k*(alpha+e)+(1-beta)*(A-M/P))/(k*d+h*(1-beta))
Y_star =( h*(alpha+e)-d*(A-M/P))/(k*d+h*(1-beta))
r_star
Y_star
# 3
# 2000
现在假设初始实际利率为 
     
      
       
        
        
          r 
         
        
          0 
         
        
       
         = 
        
       
         10 
        
       
      
        r_0=10 
       
      
    r0=10, 
     
      
       
        
        
          Y 
         
        
          0 
         
        
       
         = 
        
       
         5000 
        
       
      
        Y_0=5000 
       
      
    Y0=5000,基于下列公式
  
      
       
        
        
          { 
         
         
          
           
            
             
              
              
                C 
               
              
                t 
               
              
             
               = 
              
             
               α 
              
             
               + 
              
             
               β 
              
              
              
                Y 
               
              
                t 
               
              
             
            
           
          
          
           
            
             
              
              
                I 
               
              
                t 
               
              
             
               = 
              
             
               e 
              
             
               − 
              
             
               d 
              
              
              
                r 
               
              
                t 
               
              
             
            
           
          
          
           
            
             
              
              
                Y 
               
               
               
                 t 
                
               
                 + 
                
               
                 1 
                
               
              
             
               = 
              
              
              
                C 
               
              
                t 
               
              
             
               + 
              
              
              
                I 
               
              
                t 
               
              
             
            
           
          
          
           
            
             
              
              
                r 
               
               
               
                 t 
                
               
                 + 
                
               
                 1 
                
               
              
             
               = 
              
             
               ( 
              
             
               k 
              
              
              
                Y 
               
              
                t 
               
              
             
               + 
              
             
               A 
              
             
               − 
              
             
               M 
              
             
               / 
              
             
               P 
              
             
               ) 
              
             
               / 
              
             
               h 
              
             
            
           
          
         
        
       
         \left\{\begin{array}{l} C_t = \alpha+\beta Y_t\\ I_t=e-dr_t\\ Y_{t+1}= C_t+I_t\\ r_{t+1} = (kY_t+A-M/P)/h \end{array}\right. 
        
       
     ⎩ 
              ⎨ 
              ⎧Ct=α+βYtIt=e−drtYt+1=Ct+Itrt+1=(kYt+A−M/P)/h
rm(list = ls())
# 参数初始化
alpha = 500
beta = 0.5
e = 1250
d = 250
k = 0.5
h = 250
A = 1000
M = 1250
P = 1
T = 100  # 迭代次数
r = numeric()
Y = numeric()
# 初始值
r[1] = 10
Y[1] = 5000
# 迭代
for (t in 1:T) {
  C = 500+0.5*Y[t]
  I = 1250-250*r[t]
  Y[t+1] = C+I
  r[t+1] = (k*Y[t]+A-M/P)/h
  
}
par(mfrow=c(1,2),mar = c(5,5,5,5))
plot(Y,type = "l",lwd=2,xlab = "实际收入Y",ylab = "实际利率r",main = "实际利率均衡过程",
     cex.axis = 2, cex.lab = 2,cex.main = 2,family = "ST")
grid(col = "black")
plot(r,type = "l",lwd=2,xlab = "实际收入Y",ylab = "实际利率r",main = "实际收入均衡过程",
     cex.axis = 2, cex.lab = 2,cex.main = 2,family = "ST")
grid(col = "black")
par(mfrow=c(1,1))
plot(Y,r,typ="l",lwd=2,xlab = "实际收入Y",ylab = "实际利率r",main = "均衡点收敛过程",
     cex.axis = 2, cex.lab = 2,cex.main = 2,family = "ST")
grid(col = "black")

 
2.2 政府部门引入
引入政府部门,政府决策变量包括政府支出 
     
      
       
       
         G 
        
       
      
        G 
       
      
    G、税收 
     
      
       
       
         T 
        
       
      
        T 
       
      
    T和转移支付 
     
      
       
        
        
          T 
         
        
          r 
         
        
       
      
        T_r 
       
      
    Tr,此时均衡条件如下:
  
      
       
        
        
          { 
         
         
          
           
            
             
              
              
                C 
               
              
                t 
               
              
             
               = 
              
             
               α 
              
             
               + 
              
             
               β 
              
             
               ( 
              
              
              
                Y 
               
              
                t 
               
              
             
               − 
              
             
               T 
              
             
               + 
              
              
              
                T 
               
              
                r 
               
              
             
               ) 
              
             
            
           
          
          
           
            
             
              
              
                I 
               
              
                t 
               
              
             
               = 
              
             
               e 
              
             
               − 
              
             
               d 
              
              
              
                r 
               
              
                t 
               
              
             
            
           
          
          
           
            
             
              
              
                Y 
               
               
               
                 t 
                
               
                 + 
                
               
                 1 
                
               
              
             
               = 
              
              
              
                C 
               
              
                t 
               
              
             
               + 
              
              
              
                I 
               
              
                t 
               
              
             
               + 
              
             
               G 
              
             
            
           
          
          
           
            
             
              
              
                r 
               
               
               
                 t 
                
               
                 + 
                
               
                 1 
                
               
              
             
               = 
              
             
               ( 
              
             
               k 
              
              
              
                Y 
               
              
                t 
               
              
             
               + 
              
             
               A 
              
             
               − 
              
             
               M 
              
             
               / 
              
             
               P 
              
             
               ) 
              
             
               / 
              
             
               h 
              
             
            
           
          
         
        
       
         \left\{\begin{array}{l} C_t = \alpha+\beta (Y_t-T+T_r)\\ I_t=e-dr_t\\ Y_{t+1}= C_t+I_t +G\\ r_{t+1} = (kY_t+A-M/P)/h \end{array}\right. 
        
       
     ⎩ 
              ⎨ 
              ⎧Ct=α+β(Yt−T+Tr)It=e−drtYt+1=Ct+It+Grt+1=(kYt+A−M/P)/h
 令政府购买 
     
      
       
       
         G 
        
       
         = 
        
       
         500 
        
       
      
        G=500 
       
      
    G=500,税收 
     
      
       
       
         T 
        
       
         = 
        
       
         20 
        
       
      
        T=20 
       
      
    T=20,转移支付 
     
      
       
        
        
          T 
         
        
          r 
         
        
       
         = 
        
       
         5 
        
       
      
        T_r=5 
       
      
    Tr=5,
rm(list = ls())
# 参数初始化
alpha = 500
beta = 0.5
e = 1250
d = 250
k = 0.5
h = 250
A = 1000
M = 1250
P = 1
T = 20
Tr = 5
G = 500
T = 100  # 迭代次数
r = numeric()
Y = numeric()
# 初始值
r[1] = 10
Y[1] = 5000
# 迭代
for (t in 1:T) {
  C = 500+0.5*(Y[t]-T+Tr)
  I = 1250-250*r[t]
  Y[t+1] = C+I+G
  r[t+1] = (k*Y[t]+A-M/P)/h
  
}
par(mfrow=c(1,2),mar = c(5,5,5,5))
plot(Y,type = "l",lwd=2,xlab = "实际收入Y",ylab = "实际利率r",main = "实际利率均衡过程",
     cex.axis = 2, cex.lab = 2,cex.main = 2,family = "ST")
grid(col = "black")
plot(r,type = "l",lwd=2,xlab = "实际收入Y",ylab = "实际利率r",main = "实际收入均衡过程",
     cex.axis = 2, cex.lab = 2,cex.main = 2,family = "ST")
grid(col = "black")
par(mfrow=c(1,1))
plot(Y,r,typ="l",lwd=2,xlab = "实际收入Y",ylab = "实际利率r",main = "均衡点收敛过程",
     cex.axis = 2, cex.lab = 2,cex.main = 2,family = "ST")
grid(col = "black")


2.3 价格水平影响
使价格水平 P P P不断下降,实际货币供给不断增加,实际货币供给增加又导致均衡实际利率不断降低,进而导致投资不断增加,均衡国民收入不断增加。
rm(list = ls())
# 参数初始化
alpha = 500
beta = 0.5
e = 1250
d = 250
k = 0.5
h = 250
A = 1000
M = 1250
T = 20
Tr = 5
G = 500
T = 100  # 迭代次数
r = numeric()
Y = numeric()
# 初始值
r[1] = 10
Y[1] = 5000
# 迭代
P = c(1,0.8,0.6,0.4)
par(mfrow=c(2,2),mar = c(5,5,5,5))
for(j in P){
  for (t in 1:T) {
    C = 500+0.5*(Y[t]-T+Tr)
    I = 1250-250*r[t]
    Y[t+1] = C+I+G
    r[t+1] = (k*Y[t]+A-M/j)/h
  }
  plot(Y,r,typ="l",lwd=2,xlab = "实际收入Y",ylab = "实际利率r",main = paste("价格水平P=",j),
       cex.axis = 2, cex.lab = 2,cex.main = 2,family = "ST")
  grid(col = "black")
}

2.4 随机扰动因素
除收入外,还有其他一些因素也会影响消费;同理,除了利率,也有其他因素也会影响投资大小;货币需求和货币供给之间也存在随机误差。因此,均衡条件进一步改进为
  
      
       
        
        
          { 
         
         
          
           
            
             
              
              
                C 
               
              
                t 
               
              
             
               = 
              
             
               α 
              
             
               + 
              
             
               β 
              
             
               ( 
              
              
              
                Y 
               
              
                t 
               
              
             
               − 
              
             
               T 
              
             
               + 
              
              
              
                T 
               
              
                r 
               
              
             
               ) 
              
             
               + 
              
              
              
                ε 
               
              
                t 
               
              
             
            
           
          
          
           
            
             
              
              
                I 
               
              
                t 
               
              
             
               = 
              
             
               e 
              
             
               − 
              
             
               d 
              
              
              
                r 
               
              
                t 
               
              
             
               + 
              
              
              
                v 
               
              
                t 
               
              
             
            
           
          
          
           
            
             
              
              
                Y 
               
               
               
                 t 
                
               
                 + 
                
               
                 1 
                
               
              
             
               = 
              
              
              
                C 
               
              
                t 
               
              
             
               + 
              
              
              
                I 
               
              
                t 
               
              
             
               + 
              
             
               G 
              
             
            
           
          
          
           
            
             
              
              
                r 
               
               
               
                 t 
                
               
                 + 
                
               
                 1 
                
               
              
             
               = 
              
             
               ( 
              
             
               k 
              
              
              
                Y 
               
              
                t 
               
              
             
               + 
              
             
               A 
              
             
               − 
              
             
               M 
              
             
               / 
              
             
               P 
              
             
               + 
              
              
              
                w 
               
              
                t 
               
              
             
               ) 
              
             
               / 
              
             
               h 
              
             
            
           
          
          
           
            
             
              
              
                ε 
               
              
                t 
               
              
             
               , 
              
              
              
                v 
               
              
                t 
               
              
             
               , 
              
              
              
                w 
               
              
                t 
               
              
             
               ∼ 
              
             
               N 
              
             
               ( 
              
             
               0 
              
             
               , 
              
             
               1 
              
             
               ) 
              
             
            
           
          
         
        
       
         \left\{\begin{array}{l} C_t = \alpha+\beta (Y_t-T+T_r)+\varepsilon_t \\ I_t=e-dr_t+v_t\\ Y_{t+1}= C_t+I_t +G\\ r_{t+1} = (kY_t+A-M/P+w_t)/h\\ \varepsilon_t,v_t,w_t\sim N(0,1) \end{array}\right. 
        
       
     ⎩ 
              ⎨ 
              ⎧Ct=α+β(Yt−T+Tr)+εtIt=e−drt+vtYt+1=Ct+It+Grt+1=(kYt+A−M/P+wt)/hεt,vt,wt∼N(0,1)
 其中 
     
      
       
        
        
          ε 
         
        
          t 
         
        
       
         , 
        
        
        
          v 
         
        
          t 
         
        
       
         , 
        
        
        
          w 
         
        
          t 
         
        
       
      
        \varepsilon_t,v_t,w_t 
       
      
    εt,vt,wt假定服从标准正态分布。
#------------------------随机扰动影响-----------------------------
rm(list = ls())
# 参数初始化
alpha = 500
beta = 0.5
e = 1250
d = 250
k = 0.5
h = 250
A = 1000
M = 1250
P = 1
T = 20
Tr = 5
G = 500
T = 100  # 迭代次数
r = numeric()
Y = numeric()
# 初始值
r[1] = 4
Y[1] = 2450
# 迭代
for (t in 1:T) {
  C = 500+0.5*(Y[t]-T+Tr)+rnorm(1,0,1)
  I = 1250-250*r[t]+rnorm(1,0,1)
  Y[t+1] = C+I+G
  r[t+1] = (k*Y[t]+A-M/P+rnorm(1,0,1) )/h
  
}
par(mfrow=c(1,2),mar = c(5,5,5,5))
plot(Y,type = "l",lwd=2,xlab = "实际收入Y",ylab = "实际利率r",main = "实际利率均衡过程",
     cex.axis = 2, cex.lab = 2,cex.main = 2,family = "ST")
grid(col = "black")
plot(r,type = "l",lwd=2,xlab = "实际收入Y",ylab = "实际利率r",main = "实际收入均衡过程",
     cex.axis = 2, cex.lab = 2,cex.main = 2,family = "ST")
grid(col = "black")
par(mfrow=c(1,1))
plot(Y,r,typ="l",lwd=2,xlab = "实际收入Y",ylab = "实际利率r",main = "均衡点收敛过程",
     cex.axis = 2, cex.lab = 2,cex.main = 2,family = "ST")
grid(col = "black")

 



















