The plus operator
设 M \mathcal{M} M表示一个n维的流型,因为流型局部同胚与 R n \mathbb{R}^n Rn,所以我们可以通过定义符号 ⊞ \boxplus ⊞和 ⊟ \boxminus ⊟建立一个流型 M \mathcal{M} M的局部邻域和其正切空间的双射。
⊞ : M × R n → M ; ⊟ : M × M n → R n \boxplus:\mathcal{M}\times \mathbb{R}^n\to \mathcal{M};\quad\boxminus:\mathcal{M}\times \mathbb{M}^n\to \mathbb{R}^n ⊞:M×Rn→M;⊟:M×Mn→Rn
对于流型
    
     
      
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
      
      
       SO(3)
      
     
    SO(3),
    
     
      
       
        ⊞
       
       
        :
       
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
       
        ×
       
       
        
         R
        
        
         n
        
       
       
        →
       
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
      
      
       \boxplus:SO(3)\times \mathbb{R}^n\to SO(3)
      
     
    ⊞:SO(3)×Rn→SO(3)生成一个
    
     
      
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
      
      
       SO(3)
      
     
    SO(3)中的元素,其结果是参考元素
    
     
      
       
        R
       
       
        ∈
       
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
      
      
       \bold{R}\in SO(3)
      
     
    R∈SO(3)和一个(通常很小的)旋转的组合。这个旋转由流型在参考元素
    
     
      
       
        R
       
      
      
       \bold{R}
      
     
    R处的正切空间中的一个向量
    
     
      
       
        θ
       
       
        ∈
       
       
        
         R
        
        
         3
        
       
      
      
       \theta\in\mathbb{R}^3
      
     
    θ∈R3指定。
 
     
      
       
        
         M
        
        
         =
        
        
         S
        
        
         O
        
        
         (
        
        
         3
        
        
         )
        
        
         :
        
        
         R
        
        
         ⊞
        
        
         θ
        
        
         =
        
        
         R
        
        
         
          E
         
         
          x
         
         
          p
         
        
        
         (
        
        
         θ
        
        
         )
        
       
       
         \mathcal{M}=SO(3):\bold{R}\boxplus\bm{\theta}=\bold{R}{\rm Exp}(\bm{\theta}) 
       
      
     M=SO(3):R⊞θ=RExp(θ)
 minus符号
    
     
      
       
        ⊟
       
       
        :
       
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
       
        ×
       
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
       
        →
       
       
        
         R
        
        
         3
        
       
      
      
       \boxminus:SO(3)\times SO(3)\to \mathbb{R}^3
      
     
    ⊟:SO(3)×SO(3)→R3是plus符号的逆运算,它返回两个
    
     
      
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
      
      
       SO(3)
      
     
    SO(3)元素的角度差异向量
    
     
      
       
        θ
       
       
        ∈
       
       
        
         R
        
        
         3
        
       
      
      
       \bm{\theta}\in\mathbb{R}^3
      
     
    θ∈R3,角度差异向量在参考元素
    
     
      
       
        R
       
      
      
       \bold{R}
      
     
    R的正切空间中表示。
 注意到这个符号可以定义于任意SO(3)的表示:
 
     
      
       
        
         q
        
        
         ⊞
        
        
         θ
        
        
         =
        
        
         q
        
        
         ⊗
        
        
         
          E
         
         
          x
         
         
          p
         
        
        
         (
        
        
         θ
        
        
         )
        
        
        
         θ
        
        
         =
        
        
         
          q
         
         
          S
         
        
        
         ⊟
        
        
         
          q
         
         
          R
         
        
        
         =
        
        
         
          L
         
         
          o
         
         
          g
         
        
        
         (
        
        
         
          q
         
         
          R
         
         
          ∗
         
        
        
         ⊗
        
        
         
          q
         
         
          S
         
        
        
         )
        
       
       
         \bold{q}\boxplus \bm{\theta}=\bold{q}\otimes{\rm Exp}(\bm{\theta})\\ \bm{\theta}=\bold{q}_S\boxminus\bold{q}_R={\rm Log}(\bold{q}^{\ast}_R\otimes \bold{q}_S) 
       
      
     q⊞θ=q⊗Exp(θ)θ=qS⊟qR=Log(qR∗⊗qS)
 在这两种情况下,请注意,即使向量差
    
     
      
       
        θ
       
      
      
       \bm{\theta}
      
     
    θ通常被认为是很小的,上面的定义适用于
    
     
      
       
        θ
       
      
      
       \bm{\theta}
      
     
    θ的任何值(直到SO(3)流形的第一个覆盖范围,也就是说,对于角
    
     
      
       
        θ
       
       
        <
       
       
        π
       
      
      
       \theta < \pi
      
     
    θ<π
四种可能的导数定义
Functions from vector space to vector space
给定一个函数
    
     
      
       
        f
       
       
        :
       
       
        
         R
        
        
         m
        
       
       
        →
       
       
        
         R
        
        
         n
        
       
      
      
       f:\mathbb{R}^m\to\mathbb{R}^{n}
      
     
    f:Rm→Rn
 
     
      
       
        
         
          
           ∂
          
          
           f
          
          
           
            (
           
           
            x
           
           
            )
           
          
         
         
          
           ∂
          
          
           x
          
         
        
        
         =
        
        
         
          
           lim
          
          
           
          
         
         
          
           δ
          
          
           x
          
          
           →
          
          
           0
          
         
        
        
         
          
           f
          
          
           
            (
           
           
            x
           
           
            +
           
           
            δ
           
           
            x
           
           
            )
           
          
          
           −
          
          
           f
          
          
           
            (
           
           
            x
           
           
            )
           
          
         
         
          
           δ
          
          
           x
          
         
        
        
         ∈
        
        
         
          R
         
         
          
           n
          
          
           ×
          
          
           m
          
         
        
        
        
         f
        
        
         
          (
         
         
          x
         
         
          +
         
         
          Δ
         
         
          x
         
         
          )
         
        
        
         ≈
        
        
         f
        
        
         
          (
         
         
          x
         
         
          )
         
        
        
         +
        
        
         
          
           ∂
          
          
           f
          
          
           
            (
           
           
            x
           
           
            )
           
          
         
         
          
           ∂
          
          
           x
          
         
        
        
         Δ
        
        
         x
        
        
         ∈
        
        
         
          R
         
         
          n
         
        
       
       
         \dfrac{\partial f\left( \bold{x}\right) }{\partial \bold{x}}=\lim _{\delta \bold{x}\rightarrow 0}\dfrac{f\left( \bold{x}+\delta \bold{x}\right) -f\left( \bold{x}\right) }{\delta \bold{x}} \in\mathbb{R}^{n\times m} \\ f\left( \bold{x}+\Delta \bold{x}\right) \approx f\left( \bold{x}\right) +\dfrac{\partial f\left( \bold{x}\right) }{\partial \bold{x}}\Delta \bold{x}\in \mathbb{R}^n 
       
      
     ∂x∂f(x)=δx→0limδxf(x+δx)−f(x)∈Rn×mf(x+Δx)≈f(x)+∂x∂f(x)Δx∈Rn
Functions from S O ( 3 ) SO(3) SO(3) to S O ( 3 ) SO(3) SO(3)
给定函数
    
     
      
       
        f
       
       
        :
       
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
       
        →
       
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
      
      
       f:SO(3)\to SO(3)
      
     
    f:SO(3)→SO(3),
    
     
      
       
        R
       
       
        ∈
       
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
      
      
       \bold{R} \in SO(3)
      
     
    R∈SO(3)和一个局部的小角度变化
    
     
      
       
        θ
       
       
        ∈
       
       
        
         R
        
        
         3
        
       
      
      
       \bm{\theta}\in\mathbb{R}^3
      
     
    θ∈R3,我们使用
    
     
      
       
        {
       
       
        ⊞
       
       
        ,
       
       
        ⊟
       
       
        }
       
      
      
       \{\boxplus,\boxminus\}
      
     
    {⊞,⊟}定义导数:
 
     
      
       
        
         
          
           
            
             
              ∂
             
             
              f
             
             
              
               (
              
              
               R
              
              
               )
              
             
            
            
             
              ∂
             
             
              θ
             
            
           
          
         
         
          
           
            
            
             =
            
            
             
              
               lim
              
              
               
              
             
             
              
               δ
              
              
               θ
              
              
               →
              
              
               0
              
             
            
            
             
              
               f
              
              
               
                (
               
               
                R
               
               
                ⊞
               
               
                δ
               
               
                θ
               
               
                )
               
              
              
               ⊟
              
              
               f
              
              
               
                (
               
               
                R
               
               
                )
               
              
             
             
              
               δ
              
              
               θ
              
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              
               lim
              
              
               
              
             
             
              
               δ
              
              
               θ
              
              
               →
              
              
               0
              
             
            
            
             
              
               
                L
               
               
                o
               
               
                g
               
              
              
               
                (
               
               
                
                 f
                
                
                 
                  −
                 
                 
                  1
                 
                
               
               
                
                 (
                
                
                 R
                
                
                 )
                
               
               
                f
               
               
                
                 (
                
                
                 R
                
                
                 
                  E
                 
                 
                  x
                 
                 
                  p
                 
                
                
                 
                  (
                 
                 
                  δ
                 
                 
                  θ
                 
                 
                  )
                 
                
                
                 )
                
               
               
                )
               
              
             
             
              
               δ
              
              
               θ
              
             
            
            
            
             ∈
            
            
             
              R
             
             
              
               3
              
              
               ×
              
              
               3
              
             
            
           
          
         
        
        
         
          
           
            
             f
            
            
             
              (
             
             
              R
             
             
              ⊞
             
             
              Δ
             
             
              θ
             
             
              )
             
            
           
          
         
         
          
           
            
            
             ≈
            
            
             f
            
            
             
              (
             
             
              R
             
             
              )
             
            
            
             ⊞
            
            
             
              
               ∂
              
              
               f
              
              
               
                (
               
               
                R
               
               
                )
               
              
             
             
              
               ∂
              
              
               θ
              
             
            
            
             Δ
            
            
             θ
            
            
             ≈
            
            
             f
            
            
             
              (
             
             
              R
             
             
              )
             
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              
               
                ∂
               
               
                f
               
               
                
                 (
                
                
                 R
                
                
                 )
                
               
              
              
               
                ∂
               
               
                θ
               
              
             
             
              Δ
             
             
              θ
             
             
              )
             
            
            
            
             ∈
            
            
             S
            
            
             O
            
            
             (
            
            
             3
            
            
             )
            
           
          
         
        
       
       
         \begin{aligned} \dfrac{\partial f\left( \bold{R}\right) }{\partial \bm{\theta} }&=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{f\left( \bold{R}\boxplus \delta \bm{\theta} \right) \boxminus f\left( \bold{R}\right) }{\delta \bm{\theta} }\\ &=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{{\rm Log}\left( f^{-1}\left( \bold{R}\right) f\left( \bold{R} {\rm Exp}\left( \delta \bm{\theta} \right) \right) \right) }{\delta \bm{\theta} }\quad\in \mathbb{R}^{3\times3}\\ f\left( \bold{R}\boxplus \Delta \bm{\theta} \right) &\approx f\left( \bold{R}\right) \boxplus \dfrac{\partial f\left( \bold{R}\right) }{\partial \bm{\theta} }\Delta \bm{\theta} \approx f\left( \bold{R}\right) {\rm Exp}\left( \dfrac{\partial f\left( \bold{R} \right) }{\partial \bm{\theta} }\Delta \bm{\theta} \right) \quad\in SO(3) \end{aligned} 
       
      
     ∂θ∂f(R)f(R⊞Δθ)=δθ→0limδθf(R⊞δθ)⊟f(R)=δθ→0limδθLog(f−1(R)f(RExp(δθ)))∈R3×3≈f(R)⊞∂θ∂f(R)Δθ≈f(R)Exp(∂θ∂f(R)Δθ)∈SO(3)
Functions from vector space to S O ( 3 ) SO(3) SO(3)
给定函数
    
     
      
       
        f
       
       
        :
       
       
        
         R
        
        
         m
        
       
       
        →
       
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
      
      
       f:\mathbb{R}^m\to SO(3)
      
     
    f:Rm→SO(3),用
    
     
      
       
        ⊟
       
      
      
       \boxminus
      
     
    ⊟进行
    
     
      
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
      
      
       SO(3)
      
     
    SO(3)差分,用-进行向量差分。
 
     
      
       
        
         
          
           
            
             
              ∂
             
             
              f
             
             
              
               (
              
              
               x
              
              
               )
              
             
            
            
             
              ∂
             
             
              x
             
            
           
          
         
         
          
           
            
            
             =
            
            
             
              
               lim
              
              
               
              
             
             
              
               δ
              
              
               x
              
              
               →
              
              
               0
              
             
            
            
             
              
               f
              
              
               
                (
               
               
                x
               
               
                +
               
               
                δ
               
               
                x
               
               
                )
               
              
              
               ⊟
              
              
               f
              
              
               
                (
               
               
                x
               
               
                )
               
              
             
             
              
               δ
              
              
               x
              
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              
               lim
              
              
               
              
             
             
              
               δ
              
              
               x
              
              
               →
              
              
               0
              
             
            
            
             
              
               
                L
               
               
                o
               
               
                g
               
              
              
               
                (
               
               
                
                 f
                
                
                 
                  −
                 
                 
                  1
                 
                
               
               
                
                 (
                
                
                 x
                
                
                 )
                
               
               
                f
               
               
                
                 (
                
                
                 x
                
                
                 +
                
                
                 δ
                
                
                 x
                
                
                 )
                
               
               
                )
               
              
             
             
              
               δ
              
              
               x
              
             
            
            
            
             ∈
            
            
             
              R
             
             
              
               3
              
              
               ×
              
              
               m
              
             
            
           
          
         
        
        
         
          
           
            
             f
            
            
             
              (
             
             
              x
             
             
              +
             
             
              Δ
             
             
              x
             
             
              )
             
            
           
          
         
         
          
           
            
            
             ≈
            
            
             f
            
            
             
              (
             
             
              x
             
             
              )
             
            
            
             ⊞
            
            
             
              
               ∂
              
              
               f
              
              
               
                (
               
               
                x
               
               
                )
               
              
             
             
              
               ∂
              
              
               x
              
             
            
            
             Δ
            
            
             x
            
            
             ≈
            
            
             f
            
            
             
              (
             
             
              x
             
             
              )
             
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              
               
                ∂
               
               
                f
               
               
                
                 (
                
                
                 x
                
                
                 )
                
               
              
              
               
                ∂
               
               
                x
               
              
             
             
              Δ
             
             
              x
             
             
              )
             
            
            
            
             ∈
            
            
             S
            
            
             O
            
            
             (
            
            
             3
            
            
             )
            
           
          
         
        
       
       
         \begin{aligned} \dfrac{\partial f\left( \bold{x}\right) }{\partial \bold{x}}&=\lim _{\delta \bold{x}\rightarrow 0}\dfrac{f\left( \bold{x}+\delta \bold{x}\right) \boxminus f\left( \bold{x}\right) }{\delta \bold{x}}\\ &=\lim _{\delta \bold{x}\rightarrow 0}\dfrac{{\rm Log}\left( f^{-1}\left( \bold{x}\right) f\left( \bold{x}+\delta \bold{x}\right) \right) }{\delta \bold{x}}\quad\in\mathbb{R}^{3\times m}\\ f\left( \bold{x}+\Delta \bold{x}\right) &\approx f\left( \bold{x}\right) \boxplus \dfrac{\partial f\left( \bold{x}\right) }{\partial \bold{x}}\Delta \bold{x}\approx f\left( \bold{x}\right) {\rm Exp}\left( \dfrac{\partial f\left( \bold{x}\right) }{\partial \bold{x}}\Delta \bold{x}\right) \quad \in SO(3) \end{aligned} 
       
      
     ∂x∂f(x)f(x+Δx)=δx→0limδxf(x+δx)⊟f(x)=δx→0limδxLog(f−1(x)f(x+δx))∈R3×m≈f(x)⊞∂x∂f(x)Δx≈f(x)Exp(∂x∂f(x)Δx)∈SO(3)
Functions from S O ( 3 ) SO(3) SO(3) to vector space
对于函数 
    
     
      
       
        f
       
       
        :
       
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
       
        →
       
       
        
         R
        
        
         n
        
       
      
      
       f:SO(3)\to \mathbb{R}^{n}
      
     
    f:SO(3)→Rn,用
    
     
      
       
        ⊞
       
      
      
       \boxplus
      
     
    ⊞进行
    
     
      
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
      
      
       SO(3)
      
     
    SO(3)组合,用-进行向量差分。
 
     
      
       
        
         
          
           
            
             
              ∂
             
             
              f
             
             
              
               (
              
              
               R
              
              
               )
              
             
            
            
             
              ∂
             
             
              θ
             
            
           
          
         
         
          
           
            
            
             =
            
            
             
              
               lim
              
              
               
              
             
             
              
               δ
              
              
               θ
              
              
               →
              
              
               0
              
             
            
            
             
              
               f
              
              
               
                (
               
               
                R
               
               
                ⊞
               
               
                δ
               
               
                θ
               
               
                )
               
              
              
               −
              
              
               f
              
              
               
                (
               
               
                R
               
               
                )
               
              
             
             
              
               δ
              
              
               θ
              
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              
               lim
              
              
               
              
             
             
              
               δ
              
              
               θ
              
              
               →
              
              
               0
              
             
            
            
             
              
               f
              
              
               
                (
               
               
                R
               
               
                
                 E
                
                
                 x
                
                
                 p
                
               
               
                
                 (
                
                
                 δ
                
                
                 θ
                
                
                 )
                
               
               
                )
               
              
              
               −
              
              
               f
              
              
               
                (
               
               
                R
               
               
                )
               
              
             
             
              
               δ
              
              
               θ
              
             
            
            
            
             ∈
            
            
             
              R
             
             
              
               n
              
              
               ×
              
              
               3
              
             
            
           
          
         
        
        
         
          
           
            
             f
            
            
             
              (
             
             
              R
             
             
              ⊞
             
             
              δ
             
             
              θ
             
             
              )
             
            
           
          
         
         
          
           
            
            
             ≈
            
            
             f
            
            
             
              (
             
             
              R
             
             
              )
             
            
            
             +
            
            
             
              
               ∂
              
              
               f
              
              
               
                (
               
               
                R
               
               
                )
               
              
             
             
              
               ∂
              
              
               θ
              
             
            
            
             Δ
            
            
             θ
            
            
            
             ∈
            
            
             S
            
            
             O
            
            
             (
            
            
             3
            
            
             )
            
           
          
         
        
       
       
         \begin{aligned} \dfrac{\partial f\left( \bold{R}\right) }{\partial \bm{\theta} }&=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{f\left( \bold{R}\boxplus \delta \bm{\theta} \right) -f\left( \bold{R}\right) }{\delta \bm{\theta} }\\ &=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{f\left( \bold{R}{\rm Exp}\left( \delta \bm{\theta} \right) \right) -f\left( \bold{R}\right) }{\delta \bm{\theta} } \quad \in \mathbb{R}^{n\times 3}\\ f\left( \bold{R}\boxplus \delta \bm{\theta} \right) &\approx f\left( \bold{R}\right) +\dfrac{\partial f\left( \bold{R}\right) }{\partial \bm{\theta} }\Delta \bm{\theta} \quad \in SO(3) \end{aligned} 
       
      
     ∂θ∂f(R)f(R⊞δθ)=δθ→0limδθf(R⊞δθ)−f(R)=δθ→0limδθf(RExp(δθ))−f(R)∈Rn×3≈f(R)+∂θ∂f(R)Δθ∈SO(3)
Jacobians of rotation
Jacobian with respect to the vector
向量旋转对于向量的求导是容易的。
 
     
      
       
        
         
          
           ∂
          
          
           
            (
           
           
            q
           
           
            ⊗
           
           
            p
           
           
            ⊗
           
           
            
             q
            
            
             ∗
            
           
           
            )
           
          
         
         
          
           ∂
          
          
           p
          
         
        
        
         =
        
        
         
          
           ∂
          
          
           
            (
           
           
            
             R
            
            
             p
            
           
           
            )
           
          
         
         
          
           ∂
          
          
           p
          
         
        
        
         =
        
        
         R
        
       
       
         \dfrac{\partial \left( \bold{q}\otimes \bold{p} \otimes \bold{q}^{\ast }\right) }{\partial \bold{p}}=\dfrac{\partial \left( \bold{Rp}\right) }{\partial \bold{p}}=\bold{R} 
       
      
     ∂p∂(q⊗p⊗q∗)=∂p∂(Rp)=R
Jacobian with respect to the quaternion
旋转对于四元数的导数是棘手的。为了方便起见,我们使用符号
    
     
      
       
        q
       
       
        =
       
       
        
         [
        
        
         
          
           
            
             w
            
           
          
          
           
            
             v
            
           
          
         
        
        
         ]
        
       
       
        =
       
       
        w
       
       
        +
       
       
        v
       
      
      
       \bold{q}=\begin{bmatrix}\bold{w} & \bold{v}\end{bmatrix}=\bold{w} + \bold{v}
      
     
    q=[wv]=w+v
 
     
      
       
        
         
          
           
            
             p
            
            
             ′
            
           
          
         
         
          
           
            
            
             =
            
            
             q
            
            
             ⊗
            
            
             p
            
            
             ⊗
            
            
             
              q
             
             
              ∗
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              (
             
             
              w
             
             
              +
             
             
              v
             
             
              )
             
            
            
             ⊗
            
            
             p
            
            
             ⊗
            
            
             
              (
             
             
              w
             
             
              −
             
             
              v
             
             
              )
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              w
             
             
              2
             
            
            
             p
            
            
             +
            
            
             w
            
            
             
              (
             
             
              v
             
             
              ⊗
             
             
              p
             
             
              −
             
             
              p
             
             
              ⊗
             
             
              v
             
             
              )
             
            
            
             −
            
            
             v
            
            
             ⊗
            
            
             p
            
            
             ⊗
            
            
             v
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              w
             
             
              2
             
            
            
             p
            
            
             +
            
            
             2
            
            
             w
            
            
             
              (
             
             
              v
             
             
              ×
             
             
              p
             
             
              )
             
            
            
             −
            
            
             
              [
             
             
              
               (
              
              
               −
              
              
               
                v
               
               
                T
               
              
              
               p
              
              
               +
              
              
               v
              
              
               ×
              
              
               p
              
              
               )
              
             
             
              ⊗
             
             
              v
             
             
              ]
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              w
             
             
              2
             
            
            
             p
            
            
             +
            
            
             2
            
            
             w
            
            
             
              (
             
             
              v
             
             
              ×
             
             
              p
             
             
              )
             
            
            
             −
            
            
             
              [
             
             
              
               (
              
              
               −
              
              
               
                v
               
               
                T
               
              
              
               p
              
              
               )
              
             
             
              v
             
             
              −
             
             
              
               
                
                 
                  (
                 
                 
                  v
                 
                 
                  ×
                 
                 
                  p
                 
                 
                  )
                 
                
                
                 T
                
               
               
                v
               
              
             
             
              +
             
             
              
               (
              
              
               v
              
              
               ×
              
              
               p
              
              
               )
              
             
             
              ×
             
             
              v
             
             
              ]
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              w
             
             
              2
             
            
            
             p
            
            
             +
            
            
             2
            
            
             w
            
            
             
              (
             
             
              v
             
             
              ×
             
             
              p
             
             
              )
             
            
            
             −
            
            
             
              [
             
             
              
               (
              
              
               −
              
              
               
                v
               
               
                T
               
              
              
               p
              
              
               )
              
             
             
              v
             
             
              +
             
             
              
               (
              
              
               
                v
               
               
                T
               
              
              
               v
              
              
               )
              
             
             
              p
             
             
              −
             
             
              
               (
              
              
               
                v
               
               
                T
               
              
              
               p
              
              
               )
              
             
             
              v
             
             
              ]
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              w
             
             
              2
             
            
            
             p
            
            
             +
            
            
             2
            
            
             w
            
            
             
              (
             
             
              v
             
             
              ×
             
             
              p
             
             
              )
             
            
            
             +
            
            
             2
            
            
             
              (
             
             
              
               v
              
              
               T
              
             
             
              p
             
             
              )
             
            
            
             v
            
            
             −
            
            
             
              (
             
             
              
               v
              
              
               T
              
             
             
              v
             
             
              )
             
            
            
             p
            
           
          
         
        
       
       
         \begin{aligned} \bold{p}'&=\bold{q}\otimes \bold{p}\otimes \bold{q}^{\ast }\\ &=\left( \bold{w}+\bold{v}\right) \otimes \bold{p}\otimes \left( \bold{w}-\bold{v}\right) \\ &=\bold{w}^{2}\bold{p}+\bold{w}\left( \bold{v}\otimes \bold{p}-\bold{p}\otimes \bold{v}\right) -\bold{v}\otimes \bold{p}\otimes \bold{v}\\ &=\bold{w}^{2}\bold{p}+2\bold{w}\left( \bold{v}\times \bold{p}\right) -\left[ \left( -\bold{v}^{T}\bold{p}+\bold{v}\times \bold{p}\right) \otimes \bold{v}\right] \\ &=\bold{w}^{2}\bold{p}+2\bold{w}\left( \bold{v}\times \bold{p}\right) -\left[ \left( -\bold{v}^{T}\bold{p}\right) \bold{v}-\bcancel{\left( \bold{v}\times \bold{p}\right) ^{T}\bold{v}}+\left( \bold{v}\times \bold{p}\right) \times \bold{v}\right] \\ &=\bold{w}^{2}\bold{p}+2\bold{w}\left( \bold{v}\times \bold{p}\right) -\left[ \left( -\bold{v}^{T}\bold{p}\right) \bold{v}+\left( \bold{v}^{T}\bold{v}\right) \bold{p}-\left( \bold{v}^{T}\bold{p}\right) \bold{v}\right] \\ &=\bold{w}^{2}\bold{p}+2\bold{w}\left( \bold{v}\times \bold{p}\right) +2\left( \bold{v}^{T}\bold{p}\right) \bold{v}-\left( \bold{v}^{T}\bold{v}\right) \bold{p} \end{aligned} 
       
      
     p′=q⊗p⊗q∗=(w+v)⊗p⊗(w−v)=w2p+w(v⊗p−p⊗v)−v⊗p⊗v=w2p+2w(v×p)−[(−vTp+v×p)⊗v]=w2p+2w(v×p)−[(−vTp)v−(v×p)Tv
                     +(v×p)×v]=w2p+2w(v×p)−[(−vTp)v+(vTv)p−(vTp)v]=w2p+2w(v×p)+2(vTp)v−(vTv)p
 进而我们能够提取出导数
 
     
      
       
        
         
          
           
            
             
              ∂
             
             
              
               p
              
              
               ′
              
             
            
            
             
              ∂
             
             
              w
             
            
           
          
         
         
          
           
            
            
             =
            
            
             2
            
            
             
              w
             
             
              p
             
            
            
             +
            
            
             2
            
            
             v
            
            
             ×
            
            
             p
            
           
          
         
        
        
         
          
           
            
             
              ∂
             
             
              
               p
              
              
               ′
              
             
            
            
             
              ∂
             
             
              v
             
            
           
          
         
         
          
           
            
            
             =
            
            
             −
            
            
             2
            
            
             
              
               w
              
              
               p
              
             
             
              ∧
             
            
            
             +
            
            
             2
            
            
             
              (
             
             
              
               
                v
               
               
                p
               
              
              
               T
              
             
             
              +
             
             
              
               v
              
              
               T
              
             
             
              
               p
              
              
               I
              
             
             
              )
             
            
            
             −
            
            
             2
            
            
             
              
               p
              
              
               v
              
             
             
              T
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             2
            
            
             
              (
             
             
              
               v
              
              
               T
              
             
             
              
               p
              
              
               I
              
             
             
              +
             
             
              
               
                v
               
               
                p
               
              
              
               T
              
             
             
              −
             
             
              
               
                p
               
               
                v
               
              
              
               T
              
             
             
              −
             
             
              
               
                w
               
               
                p
               
              
              
               ∧
              
             
             
              )
             
            
           
          
         
        
       
       
         \begin{aligned} \dfrac{\partial \bold{p}'}{\partial \bold{w}}&=2\bold{wp}+2\bold{v}\times \bold{p}\\ \dfrac{\partial \bold{p}'}{\partial \bold{v}}&=-2\bold{wp}^{\wedge }+2\left( \bold{vp}^{T}+\bold{v}^{T}\bold{pI}\right) -2\bold{pv}^{T}\\ &=2\left( \bold{v}^{T}\bold{pI}+\bold{vp}^{T}-\bold{pv}^{T}-\bold{wp}^{\wedge}\right) \end{aligned} 
       
      
     ∂w∂p′∂v∂p′=2wp+2v×p=−2wp∧+2(vpT+vTpI)−2pvT=2(vTpI+vpT−pvT−wp∧)
 合并上式能够得出
 
     
      
       
        
         
          
           ∂
          
          
           
            (
           
           
            q
           
           
            ⊗
           
           
            p
           
           
            ⊗
           
           
            
             q
            
            
             ∗
            
           
           
            )
           
          
         
         
          
           ∂
          
          
           q
          
         
        
        
         =
        
        
         2
        
        
         
          [
         
         
          
           
            
             
              
               
                w
               
               
                p
               
              
              
               +
              
              
               2
              
              
               v
              
              
               ×
              
              
               p
              
             
            
           
           
            
             
              
               
                v
               
               
                T
               
              
              
               
                p
               
               
                I
               
              
              
               +
              
              
               
                
                 v
                
                
                 p
                
               
               
                T
               
              
              
               −
              
              
               
                
                 p
                
                
                 v
                
               
               
                T
               
              
              
               −
              
              
               
                
                 w
                
                
                 p
                
               
               
                ∧
               
              
             
            
           
          
         
         
          ]
         
        
        
         ∈
        
        
         
          R
         
         
          
           3
          
          
           ×
          
          
           4
          
         
        
       
       
         \dfrac{\partial \left( \bold{q}\otimes \bold{p}\otimes \bold{q}^{\ast }\right) }{\partial \bold{q}}=2\begin{bmatrix} \bold{wp}+2\bold{v}\times \bold{p} & \bold{v}^{T}\bold{pI}+\bold{vp}^{T}-\bold{pv}^{T}-\bold{wp}^{\wedge} \end{bmatrix}\in{\mathbb{R}^{3\times 4}} 
       
      
     ∂q∂(q⊗p⊗q∗)=2[wp+2v×pvTpI+vpT−pvT−wp∧]∈R3×4
S O ( 3 ) SO(3) SO(3)的右Jacobian矩阵

 
     
      
       
        
         
          
           
          
         
         
          
           
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              θ
             
             
              )
             
            
            
             ⊞
            
            
             δ
            
            
             ϕ
            
            
             =
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              θ
             
             
              +
             
             
              δ
             
             
              θ
             
             
              )
             
            
           
          
         
        
        
         
          
           
              
            
             ⟺
              
           
          
         
         
          
           
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              θ
             
             
              )
             
            
            
             ⋅
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              δ
             
             
              ϕ
             
             
              )
             
            
            
             =
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              θ
             
             
              +
             
             
              δ
             
             
              θ
             
             
              )
             
            
           
          
         
        
        
         
          
           
              
            
             ⟺
              
           
          
         
         
          
           
            
            
             δ
            
            
             ϕ
            
            
             =
            
            
             
              L
             
             
              o
             
             
              g
             
            
            
             
              (
             
             
              
               E
              
              
               x
              
              
               p
              
             
             
              
               
                (
               
               
                θ
               
               
                )
               
              
              
               
                −
               
               
                1
               
              
             
             
              
               E
              
              
               x
              
              
               p
              
             
             
              
               (
              
              
               θ
              
              
               +
              
              
               δ
              
              
               θ
              
              
               )
              
             
             
              )
             
            
            
             =
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              θ
             
             
              +
             
             
              δ
             
             
              θ
             
             
              )
             
            
            
             ⊟
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              θ
             
             
              )
             
            
           
          
         
        
       
       
         \begin{aligned} &{\rm Exp}\left( \bm{\theta} \right) \boxplus \delta \bm{\phi} ={\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \\ \iff &{\rm Exp}\left( \bm{\theta} \right) \cdot {\rm Exp}\left( \delta \bm{\phi} \right) ={\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \\ \iff &\delta \bm{\phi} ={\rm Log}\left( {\rm Exp}\left( \bm{\theta} \right) ^{-1}{\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \right) ={\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \boxminus {\rm Exp}\left( \bm{\theta} \right) \end{aligned} 
       
      
     ⟺⟺Exp(θ)⊞δϕ=Exp(θ+δθ)Exp(θ)⋅Exp(δϕ)=Exp(θ+δθ)δϕ=Log(Exp(θ)−1Exp(θ+δθ))=Exp(θ+δθ)⊟Exp(θ)
 
    
     
      
       
        δ
       
       
        ϕ
       
      
      
       \delta \bm{\phi}
      
     
    δϕ相对于
    
     
      
       
        δ
       
       
        θ
       
      
      
       \delta \bm{\theta}
      
     
    δθ的微分
 
     
      
       
        
         
          
           ∂
          
          
           δ
          
          
           ϕ
          
         
         
          
           ∂
          
          
           δ
          
          
           θ
          
         
        
        
         =
        
        
         
          
           lim
          
          
           
          
         
         
          
           δ
          
          
           θ
          
          
           →
          
          
           0
          
         
        
        
         
          
           δ
          
          
           ϕ
          
         
         
          
           δ
          
          
           θ
          
         
        
        
         =
        
        
         
          
           lim
          
          
           
          
         
         
          
           δ
          
          
           θ
          
          
           →
          
          
           0
          
         
        
        
         
          
           
            E
           
           
            x
           
           
            p
           
          
          
           
            (
           
           
            θ
           
           
            +
           
           
            δ
           
           
            θ
           
           
            )
           
          
          
           ⊟
          
          
           
            E
           
           
            x
           
           
            p
           
          
          
           
            (
           
           
            θ
           
           
            )
           
          
         
         
          
           δ
          
          
           θ
          
         
        
       
       
         \dfrac{\partial \delta \bm{\phi} }{\partial \delta \bm{\theta} }=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{\delta \bm{\phi} }{\delta \bm{\theta} }=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{{\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \boxminus {\rm Exp}\left( \bm{\theta} \right) }{\delta \bm{\theta} } 
       
      
     ∂δθ∂δϕ=δθ→0limδθδϕ=δθ→0limδθExp(θ+δθ)⊟Exp(θ)
 这个Jacobian矩阵就是熟知的
    
     
      
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
      
      
       SO(3)
      
     
    SO(3)的右Jacobian矩阵,其定义为:
 
     
      
       
        
         
          
           
            
             
              J
             
             
              r
             
            
            
             
              (
             
             
              θ
             
             
              )
             
            
           
          
         
         
          
           
            
            
             =
            
            
             
              
               ∂
              
              
               
                E
               
               
                x
               
               
                p
               
              
              
               
                (
               
               
                θ
               
               
                )
               
              
             
             
              
               ∂
              
              
               θ
              
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              
               lim
              
              
               
              
             
             
              
               δ
              
              
               θ
              
              
               →
              
              
               0
              
             
            
            
             
              
               
                E
               
               
                x
               
               
                p
               
              
              
               
                (
               
               
                θ
               
               
                +
               
               
                δ
               
               
                θ
               
               
                )
               
              
              
               ⊗
              
              
               
                E
               
               
                x
               
               
                p
               
              
              
               
                (
               
               
                θ
               
               
                )
               
              
             
             
              
               δ
              
              
               θ
              
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              
               lim
              
              
               
              
             
             
              
               δ
              
              
               θ
              
              
               →
              
              
               0
              
             
            
            
             
              
               
                L
               
               
                o
               
               
                g
               
              
              
               
                (
               
               
                
                 E
                
                
                 x
                
                
                 p
                
               
               
                
                 
                  (
                 
                 
                  θ
                 
                 
                  )
                 
                
                
                 T
                
               
               
                
                 E
                
                
                 x
                
                
                 p
                
               
               
                
                 (
                
                
                 θ
                
                
                 +
                
                
                 δ
                
                
                 θ
                
                
                 )
                
               
               
                )
               
              
             
             
              
               δ
              
              
               θ
              
             
            
            
            
             if using 
            
            
             R
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              
               lim
              
              
               
              
             
             
              
               δ
              
              
               θ
              
              
               →
              
              
               0
              
             
            
            
             
              
               
                L
               
               
                o
               
               
                g
               
              
              
               
                (
               
               
                
                 E
                
                
                 x
                
                
                 p
                
               
               
                
                 
                  (
                 
                 
                  θ
                 
                 
                  )
                 
                
                
                 ∗
                
               
               
                ⊗
               
               
                
                 E
                
                
                 x
                
                
                 p
                
               
               
                
                 (
                
                
                 θ
                
                
                 +
                
                
                 δ
                
                
                 θ
                
                
                 )
                
               
               
                )
               
              
             
             
              
               δ
              
              
               θ
              
             
            
            
            
             if using 
            
            
             q
            
           
          
         
        
       
       
         \begin{aligned} \bold{J}_{r}\left( \bm{\theta} \right) &=\dfrac{\partial {\rm Exp}\left( \bm{\theta} \right) }{\partial \bm{\theta} } \\ &=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{{\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \otimes {\rm Exp}\left( \bm{\theta} \right) }{\delta \bm{\theta} } \\ &=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{{\rm Log}\left( {\rm Exp}\left( \bm{\theta} \right) ^{T}{\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \right) }{\delta \bm{\theta} }\qquad \text{if using }\bold{R} \\ &=\lim _{\delta \bm{\theta} \rightarrow 0}\dfrac{{\rm Log} \left( {\rm Exp}\left( \bm{\theta} \right) ^{\ast }\otimes {\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) \right) }{\delta \bm{\theta} } \qquad \text{if using }\bold{q} \end{aligned} 
       
      
     Jr(θ)=∂θ∂Exp(θ)=δθ→0limδθExp(θ+δθ)⊗Exp(θ)=δθ→0limδθLog(Exp(θ)TExp(θ+δθ))if using R=δθ→0limδθLog(Exp(θ)∗⊗Exp(θ+δθ))if using q
 右Jacobian矩阵及其逆矩阵的封闭形式可以计算出:
 
     
      
       
        
         
          J
         
         
          r
         
        
        
         
          (
         
         
          θ
         
         
          )
         
        
        
         =
        
        
         I
        
        
         −
        
        
         
          
           1
          
          
           −
          
          
           cos
          
          
           
          
          
           
            ∥
           
           
            θ
           
           
            ∥
           
          
         
         
          
           
            ∥
           
           
            θ
           
           
            ∥
           
          
          
           2
          
         
        
        
         
          θ
         
         
          ∧
         
        
        
         +
        
        
         
          
           
            ∥
           
           
            θ
           
           
            ∥
           
          
          
           −
          
          
           sin
          
          
           
          
          
           
            ∥
           
           
            θ
           
           
            ∥
           
          
         
         
          
           
            ∥
           
           
            θ
           
           
            ∥
           
          
          
           3
          
         
        
        
         
          θ
         
         
          
           ∧
          
          
           2
          
         
        
        
        
         
          J
         
         
          r
         
         
          
           −
          
          
           1
          
         
        
        
         
          (
         
         
          θ
         
         
          )
         
        
        
         =
        
        
         I
        
        
         +
        
        
         
          1
         
         
          2
         
        
        
         
          θ
         
         
          ∧
         
        
        
         +
        
        
         
          (
         
         
          
           1
          
          
           
            
             ∥
            
            
             θ
            
            
             ∥
            
           
           
            2
           
          
         
         
          −
         
         
          
           
            1
           
           
            +
           
           
            cos
           
           
            
           
           
            
             ∥
            
            
             θ
            
            
             ∥
            
           
          
          
           
            2
           
           
            
             ∥
            
            
             θ
            
            
             ∥
            
           
           
            sin
           
           
            
           
           
            
             ∥
            
            
             θ
            
            
             ∥
            
           
          
         
         
          )
         
        
        
         
          θ
         
         
          
           ∧
          
          
           2
          
         
        
       
       
         \bold{J}_{r}\left( \bm{\theta} \right) =I-\dfrac{1-\cos \left\| \bm{\theta} \right\| }{\left\| \bm{\theta} \right\| ^{2}}\bm{\theta} ^{\wedge }+\dfrac{\left\| \bm{\theta} \right\| -\sin \left\| \bm{\theta} \right\| }{\left\| \bm{\theta} \right\| ^{3}}\bm{\theta} ^{\wedge2}\\ \bold{J}_{r}^{-1}\left( \bm{\theta} \right) =I+\dfrac{1}{2}\bm{\theta} ^{\wedge }+\left( \dfrac{1}{\left\| \bm{\theta} \right\| ^{2}}-\dfrac{1+\cos \left\| \bm{\theta} \right\| }{2\left\| \bm{\theta} \right\| \sin \left\| \bm{\theta} \right\| }\right) \bm{\theta} ^{\wedge 2} 
       
      
     Jr(θ)=I−∥θ∥21−cos∥θ∥θ∧+∥θ∥3∥θ∥−sin∥θ∥θ∧2Jr−1(θ)=I+21θ∧+(∥θ∥21−2∥θ∥sin∥θ∥1+cos∥θ∥)θ∧2
 SO(3)的右Jacobian矩阵对于任意
    
     
      
       
        θ
       
      
      
       \bm{\theta}
      
     
    θ和小量
    
     
      
       
        δ
       
       
        θ
       
      
      
       \delta \bm{\theta}
      
     
    δθ具有以下性质:
 
     
      
       
        
         
          
           
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              θ
             
             
              +
             
             
              δ
             
             
              θ
             
             
              )
             
            
           
          
         
         
          
           
            
            
             ≈
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              θ
             
             
              )
             
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              
               J
              
              
               r
              
             
             
              
               (
              
              
               θ
              
              
               )
              
             
             
              δ
             
             
              θ
             
             
              )
             
            
           
          
         
        
        
         
          
           
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              θ
             
             
              )
             
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              δ
             
             
              θ
             
             
              )
             
            
           
          
         
         
          
           
            
            
             ≈
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              θ
             
             
              +
             
             
              
               J
              
              
               r
              
              
               
                −
               
               
                1
               
              
             
             
              
               (
              
              
               θ
              
              
               )
              
             
             
              δ
             
             
              θ
             
             
              )
             
            
           
          
         
        
       
       
         \begin{aligned} {\rm Exp}\left( \bm{\theta} +\delta \bm{\theta} \right) &\approx {\rm Exp}\left( \bm{\theta} \right) {\rm Exp}\left( \bold{J}_{r}\left( \bm{\theta} \right) \delta \bm{\theta} \right) \\ {\rm Exp}\left( \bm{\theta} \right) {\rm Exp}\left( \delta \bm{\theta} \right) &\approx {\rm Exp}\left( \bm{\theta} +\bold{J}_{r}^{-1}\left( \bm{\theta} \right) \delta \bm{\theta} \right) \end{aligned} 
       
      
     Exp(θ+δθ)Exp(θ)Exp(δθ)≈Exp(θ)Exp(Jr(θ)δθ)≈Exp(θ+Jr−1(θ)δθ)
Jacobian with respect to the rotation vector
∂ ( q ⊗ p ⊗ q ∗ ) ∂ δ θ = ∂ ( R p ) ∂ δ θ = − R { θ } p ∧ J r ( θ ) \dfrac{\partial \left( \bold{q}\otimes \bold{p}\otimes \bold{q}^{\ast }\right) }{\partial \delta \bm{\theta} }=\dfrac{\partial \left( \bold{R} \bold{p}\right) }{\partial \delta \bm{\theta} }=-\bold{R}\left\{ \bm{\theta} \right\} \bold{p}^{\wedge} \bold{J}_{r}\left( \bm{\theta} \right) ∂δθ∂(q⊗p⊗q∗)=∂δθ∂(Rp)=−R{θ}p∧Jr(θ)
扰动
局部扰动
被扰动的朝向
    
     
      
       
        
         q
        
        
         ~
        
       
      
      
       \tilde{\bold{q}}
      
     
    q~可表示为未经扰动的朝向
    
     
      
       
        q
       
      
      
       \bold{q}
      
     
    q与局部小扰动
    
     
      
       
        Δ
       
       
        
         q
        
        
         L
        
       
      
      
       \Delta \bold{q}_{\mathcal{L}}
      
     
    ΔqL的组合。由于Hamilton约定,这个局部扰动出现在复合积的右边,我们也可以给出等价的旋转矩阵形式
 
     
      
       
        
         
          q
         
         
          ~
         
        
        
         =
        
        
         q
        
        
         ⊗
        
        
         Δ
        
        
         
          q
         
         
          L
         
        
        
        
         
          R
         
         
          ~
         
        
        
         =
        
        
         R
        
        
         Δ
        
        
         
          R
         
         
          L
         
        
       
       
         \tilde{\bold{q}}=\bold{q} \otimes \Delta \bold{q}_{\mathcal{L}}\qquad \tilde{\bold{R}}=\bold{R}\Delta \bold{R}_{\mathcal{L}} 
       
      
     q~=q⊗ΔqLR~=RΔRL
 局部扰动很容易通过指数映射转换为切空间中定义的等效向量形式:
 
     
      
       
        
         
          
           q
          
          
           ~
          
         
         
          L
         
        
        
         =
        
        
         
          q
         
         
          L
         
        
        
         ⊗
        
        
         
          E
         
         
          x
         
         
          p
         
        
        
         
          (
         
         
          Δ
         
         
          
           ϕ
          
          
           L
          
         
         
          )
         
        
        
        
         
          
           R
          
          
           ~
          
         
         
          L
         
        
        
         =
        
        
         
          R
         
         
          L
         
        
        
         
          E
         
         
          x
         
         
          p
         
        
        
         
          (
         
         
          Δ
         
         
          
           ϕ
          
          
           L
          
         
         
          )
         
        
       
       
         \tilde{\bold{q}}_{\mathcal{L}}=\bold{q}_{\mathcal{L}}\otimes {\rm Exp}\left( \Delta \bm{\phi} _{\mathcal{L}}\right) \qquad \tilde{\bold{R}}_{\mathcal{L}}=\bold{R}_{\mathcal{L}}{\rm Exp}\left( \Delta \bm{\phi} _{\mathcal{L}}\right) 
       
      
     q~L=qL⊗Exp(ΔϕL)R~L=RLExp(ΔϕL)
 局部扰动的表示为:
 
     
      
       
        
         Δ
        
        
         
          ϕ
         
         
          L
         
        
        
         =
        
        
         
          L
         
         
          o
         
         
          g
         
        
        
         
          (
         
         
          
           q
          
          
           L
          
          
           ∗
          
         
         
          ⊗
         
         
          
           
            q
           
           
            ~
           
          
          
           L
          
         
         
          )
         
        
        
         =
        
        
         
          L
         
         
          o
         
         
          g
         
        
        
         
          (
         
         
          
           R
          
          
           L
          
          
           T
          
         
         
          ⋅
         
         
          
           
            R
           
           
            ~
           
          
          
           L
          
         
         
          )
         
        
       
       
         \Delta \bm{\phi} _{\mathcal{L}}={\rm Log}\left(\bold{q}_{\mathcal{L}}^{\ast } \otimes \tilde{\bold{q}}_{\mathcal{L}}\right) ={\rm Log}\left( \bold{R}_{\mathcal{L}}^{T}\cdot\tilde{\bold{R}}_{\mathcal{L}} \right) 
       
      
     ΔϕL=Log(qL∗⊗q~L)=Log(RLT⋅R~L)
 如果扰动角
    
     
      
       
        Δ
       
       
        
         ϕ
        
        
         L
        
       
      
      
       \Delta \bm{\phi}_{\mathcal{L}}
      
     
    ΔϕL足够小,则四元数形式的扰动和旋转矩阵形式的扰动可以近似为泰勒展开直到线性项
 
     
      
       
        
         
          
           
            
             Δ
            
            
             
              q
             
             
              L
             
            
           
          
         
         
          
           
            
            
             =
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              Δ
             
             
              
               ϕ
              
              
               L
              
             
             
              )
             
            
            
             ≈
            
            
             1
            
            
             +
            
            
             
              1
             
             
              2
             
            
            
             Δ
            
            
             
              ϕ
             
             
              L
             
            
            
             =
            
            
             
              [
             
             
              
               
                
                 
                  1
                 
                
               
              
              
               
                
                 
                  
                   
                    
                     1
                    
                    
                     2
                    
                   
                  
                  
                   Δ
                  
                  
                   
                    ϕ
                   
                   
                    L
                   
                  
                 
                
               
              
             
             
              ]
             
            
           
          
         
        
        
         
          
           
            
             Δ
            
            
             
              R
             
             
              L
             
            
           
          
         
         
          
           
            
            
             =
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             
              (
             
             
              Δ
             
             
              
               ϕ
              
              
               L
              
             
             
              )
             
            
            
             =
            
            
             I
            
            
             +
            
            
             Δ
            
            
             
              ϕ
             
             
              L
             
             
              ∧
             
            
           
          
         
        
       
       
         \begin{aligned} \Delta \bold{q}_{\mathcal{L}}&={\rm Exp}\left( \Delta \bm{\phi} _{\mathcal{L}}\right) \approx1+\dfrac{1}{2}\Delta \bm{\phi} _{\mathcal{L}}=\begin{bmatrix} 1 \\ \dfrac{1}{2}\Delta \bm{\phi} _{\mathcal{L}} \end{bmatrix} \\ \Delta \bold{R}_{\mathcal{L}}&={\rm Exp}\left( \Delta \bm{\phi} _{\mathcal{L}}\right) =I+\Delta \bm{\phi} _{\mathcal{L}}^{\wedge} \end{aligned} 
       
      
     ΔqLΔRL=Exp(ΔϕL)≈1+21ΔϕL=[121ΔϕL]=Exp(ΔϕL)=I+ΔϕL∧
 因此,扰动可以在与
    
     
      
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
      
      
       SO(3)
      
     
    SO(3)流形相切的局部向量空间中指定。在这个向量空间中表示这些扰动的协方差矩阵是很方便的,即用一个3×3协方差矩阵表示。
全局扰动
全局扰动出现在复合积的左侧
 
     
      
       
        
         
          
           q
          
          
           ~
          
         
         
          G
         
        
        
         =
        
        
         
          E
         
         
          x
         
         
          p
         
        
        
         
          (
         
         
          Δ
         
         
          
           ϕ
          
          
           G
          
         
         
          )
         
        
        
         ⊗
        
        
         
          q
         
         
          G
         
        
        
        
         
          
           R
          
          
           ~
          
         
         
          G
         
        
        
         =
        
        
         
          E
         
         
          x
         
         
          p
         
        
        
         
          (
         
         
          Δ
         
         
          
           ϕ
          
          
           G
          
         
         
          )
         
        
        
         ⋅
        
        
         
          R
         
         
          G
         
        
       
       
         \tilde{\bold{q}}_{\mathcal{G}}={\rm Exp}\left( \Delta \bm{\phi} _{\mathcal{G}}\right) \otimes \bold{q}_{\mathcal{G}} \qquad \tilde{\bold{R}}_{\mathcal{G}}={\rm Exp}\left( \Delta \bm{\phi} _{\mathcal{G}}\right) \cdot \bold{R}_{\mathcal{G}} 
       
      
     q~G=Exp(ΔϕG)⊗qGR~G=Exp(ΔϕG)⋅RG
 全局扰动的表示为:
 
     
      
       
        
         Δ
        
        
         
          ϕ
         
         
          G
         
        
        
         =
        
        
         
          L
         
         
          o
         
         
          g
         
        
        
         
          (
         
         
          
           
            q
           
           
            ~
           
          
          
           G
          
         
         
          ⊗
         
         
          
           q
          
          
           G
          
          
           ∗
          
         
         
          )
         
        
        
         =
        
        
         
          L
         
         
          o
         
         
          g
         
        
        
         
          (
         
         
          
           
            R
           
           
            ~
           
          
          
           G
          
         
         
          ⋅
         
         
          
           R
          
          
           G
          
          
           T
          
         
         
          )
         
        
       
       
         \Delta \bm{\phi} _{\mathcal{G}}={\rm Log}\left( \tilde{\bold{q}}_{\mathcal{G}}\otimes \bold{q}_{\mathcal{G}}^{\ast }\right) ={\rm Log}\left( \tilde{\bold{R}}_{\mathcal{G}}\cdot \bold{R}_{\mathcal{G}}^{T}\right) 
       
      
     ΔϕG=Log(q~G⊗qG∗)=Log(R~G⋅RGT)
 全局扰动可以在与SO(3)流形原点处相切的向量空间中指定。
时间微分
在向量空间中表示局部扰动,我们可以很容易地得到时间导数的表达式。只要考虑
    
     
      
       
        q
       
       
        =
       
       
        q
       
       
        (
       
       
        t
       
       
        )
       
      
      
       \bold{q} = \bold{q}(t)
      
     
    q=q(t)为原始状态,
    
     
      
       
        
         q
        
        
         ~
        
       
       
        =
       
       
        q
       
       
        (
       
       
        t
       
       
        +
       
       
        Δ
       
       
        t
       
       
        )
       
      
      
       \tilde{\bold{q}} = \bold{q}(t +\Delta t)
      
     
    q~=q(t+Δt)为扰动状态,并应用导数的定义
 
     
      
       
        
         
          
           
            
             q
            
            
             ˙
            
           
          
         
         
          
           
            
            
             =
            
            
             
              
               lim
              
              
               
              
             
             
              
               Δ
              
              
               t
              
              
               →
              
              
               0
              
             
            
            
             
              
               q
              
              
               
                (
               
               
                t
               
               
                +
               
               
                Δ
               
               
                t
               
               
                )
               
              
              
               −
              
              
               q
              
              
               
                (
               
               
                t
               
               
                )
               
              
             
             
              
               Δ
              
              
               t
              
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              
               lim
              
              
               
              
             
             
              
               Δ
              
              
               t
              
              
               →
              
              
               0
              
             
            
            
             
              
               q
              
              
               ⊗
              
              
               Δ
              
              
               
                q
               
               
                L
               
              
              
               −
              
              
               q
              
             
             
              
               Δ
              
              
               t
              
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              
               lim
              
              
               
              
             
             
              
               Δ
              
              
               t
              
              
               →
              
              
               0
              
             
            
            
             
              
               q
              
              
               ⊗
              
              
               
                (
               
               
                
                 [
                
                
                 
                  
                   
                    
                     1
                    
                   
                  
                 
                 
                  
                   
                    
                     
                      Δ
                     
                     
                      
                       ϕ
                      
                      
                       L
                      
                     
                     
                      /
                     
                     
                      2
                     
                    
                   
                  
                 
                
                
                 ]
                
               
               
                −
               
               
                
                 [
                
                
                 
                  
                   
                    
                     1
                    
                   
                  
                 
                 
                  
                   
                    
                     0
                    
                   
                  
                 
                
                
                 ]
                
               
               
                )
               
              
             
             
              
               Δ
              
              
               t
              
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              
               lim
              
              
               
              
             
             
              
               Δ
              
              
               t
              
              
               →
              
              
               0
              
             
            
            
             
              
               q
              
              
               ⊗
              
              
               
                [
               
               
                
                 
                  
                   
                    0
                   
                  
                 
                
                
                 
                  
                   
                    
                     Δ
                    
                    
                     
                      ϕ
                     
                     
                      L
                     
                    
                    
                     /
                    
                    
                     2
                    
                   
                  
                 
                
               
               
                ]
               
              
             
             
              
               Δ
              
              
               t
              
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              1
             
             
              2
             
            
            
             q
            
            
             ⊗
            
            
             
              [
             
             
              
               
                
                 
                  0
                 
                
               
              
              
               
                
                 
                  
                   ω
                  
                  
                   L
                  
                 
                
               
              
             
             
              ]
             
            
           
          
         
        
       
       
         \begin{aligned} \dot{\bold{q}}&=\lim _{\Delta t\rightarrow 0}\dfrac{\bold{q}\left( t+\Delta t\right) -\bold{q}\left( t\right) }{\Delta t} \\ &=\lim _{\Delta t\rightarrow 0}\dfrac{\bold{q}\otimes \Delta \bold{q}_{\mathcal{L}}-\bold{q}}{\Delta t} \\ &=\lim _{\Delta t\rightarrow 0}\dfrac{\bold{q}\otimes \left( \begin{bmatrix} 1 \\ \Delta \bm{\phi} _{\mathcal{L}}/2 \end{bmatrix}-\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) }{\Delta t} \\ &=\lim _{\Delta t\rightarrow 0}\dfrac{\bold{q}\otimes \begin{bmatrix} 0 \\ \Delta \bm{\phi} _{\mathcal{L}}/2 \end{bmatrix}}{\Delta t} \\ &=\dfrac{1}{2}\bold{q}\otimes \begin{bmatrix} 0 \\ \bm{\omega} _{\mathcal{L}} \end{bmatrix} \end{aligned} 
       
      
     q˙=Δt→0limΔtq(t+Δt)−q(t)=Δt→0limΔtq⊗ΔqL−q=Δt→0limΔtq⊗([1ΔϕL/2]−[10])=Δt→0limΔtq⊗[0ΔϕL/2]=21q⊗[0ωL]
 其中
    
     
      
       
        Δ
       
       
        
         ϕ
        
        
         L
        
       
      
      
       \Delta \bm{\phi}_{\mathcal{L}}
      
     
    ΔϕL为局部扰动角,对应于由
    
     
      
       
        q
       
      
      
       \bold{q}
      
     
    q定义的局部坐标系,
    
     
      
       
        
         ω
        
        
         L
        
       
      
      
       \bm{\omega}_{\mathcal{L}}
      
     
    ωL是对应的角度变化率
 
     
      
       
        
         
          ω
         
         
          L
         
        
        
         
          (
         
         
          t
         
         
          )
         
        
        
         =
        
        
         
          
           d
          
          
           
            ϕ
           
           
            L
           
          
          
           
            (
           
           
            t
           
           
            )
           
          
         
         
          
           d
          
          
           t
          
         
        
        
         =
        
        
         
          
           lim
          
          
           
          
         
         
          
           Δ
          
          
           t
          
          
           →
          
          
           0
          
         
        
        
         
          
           Δ
          
          
           
            ϕ
           
           
            L
           
          
         
         
          
           Δ
          
          
           t
          
         
        
       
       
         \bm{\omega} _{L}\left( t\right) =\dfrac{d\bm{\phi} _{\mathcal{L}}\left( t\right) }{dt}=\lim _{\Delta t\rightarrow 0}\dfrac{\Delta \bm{\phi} _{\mathcal{L}}}{\Delta t} 
       
      
     ωL(t)=dtdϕL(t)=Δt→0limΔtΔϕL
 定义
 
     
      
       
        
         Ω
        
        
         (
        
        
         ω
        
        
         )
        
        
         ≜
        
        
         
          
           [
          
          
           ω
          
          
           ]
          
         
         
          R
         
        
        
         =
        
        
         
          [
         
         
          
           
            
             
              0
             
            
           
           
            
             
              
               −
              
              
               
                ω
               
               
                T
               
              
             
            
           
          
          
           
            
             
              ω
             
            
           
           
            
             
              
               −
              
              
               
                ω
               
               
                ∧
               
              
             
            
           
          
         
         
          ]
         
        
       
       
         \bold{\Omega}(\bm{\omega})\triangleq \left[ \bm{\omega} \right]_R= \begin{bmatrix} 0&-\bm{\omega}^T\\ \bm{\omega} & -\bm{\omega}^{\wedge} \end{bmatrix} 
       
      
     Ω(ω)≜[ω]R=[0ω−ωT−ω∧]
 可以得到
 
     
      
       
        
         
         
          
           
            
             q
            
            
             ˙
            
           
           
            =
           
           
            
             1
            
            
             2
            
           
           
            Ω
           
           
            (
           
           
            
             ω
            
            
             L
            
           
           
            )
           
           
            q
           
           
            =
           
           
            
             1
            
            
             2
            
           
           
            q
           
           
            ⊗
           
           
            
             ω
            
            
             L
            
           
           
            ,
           
           
           
            
             R
            
            
             ˙
            
           
           
            =
           
           
            R
           
           
            
             ω
            
            
             L
            
            
             ∧
            
           
          
         
         
         
          
           (1)
          
         
        
       
       
         \dot{\bold{q}}=\dfrac{1}{2}\bold{\Omega}(\bm{\omega}_{\mathcal{L}})\bold{q}=\dfrac{1}{2}\bold{q}\otimes \bm{\omega}_{\mathcal{L}},\qquad \dot{\bold{R}}=\bold{R}\bm{\omega}_{\mathcal{L}}^{\wedge}\tag{1} 
       
      
     q˙=21Ω(ωL)q=21q⊗ωL,R˙=RωL∧(1)
 这些表达式也可以在旋转群
    
     
      
       
        S
       
       
        O
       
       
        (
       
       
        3
       
       
        )
       
      
      
       SO(3)
      
     
    SO(3)的框架中得出的.然而在微分框架下,我们能够清楚地将角速度
    
     
      
       
        
         ω
        
        
         L
        
       
      
      
       \bm{\omega}_{\mathcal{L}}
      
     
    ωL与一个特定的参考系联系起来.在上面这种情况下这个参考系是由方向
    
     
      
       
        q
       
      
      
       \bold{q}
      
     
    q或
    
     
      
       
        R
       
      
      
       \bold{R}
      
     
    R定义的局部坐标系.
与全局扰动相关的时间导数同理可得,其结果为
 
     
      
       
        
         
         
          
           
            
             q
            
            
             ˙
            
           
           
            =
           
           
            
             1
            
            
             2
            
           
           
            
             ω
            
            
             G
            
           
           
            ⊗
           
           
            q
           
           
            ,
           
           
           
            
             R
            
            
             ˙
            
           
           
            =
           
           
            
             ω
            
            
             G
            
            
             ∧
            
           
           
            R
           
          
         
         
         
          
           (2)
          
         
        
       
       
         \dot{\bold{q}}=\dfrac{1}{2}\bm{\omega}_{\mathcal{G}}\otimes \bold{q},\qquad \dot{\bold{R}}=\bm{\omega}_{\mathcal{G}}^{\wedge}\bold{R} \tag{2} 
       
      
     q˙=21ωG⊗q,R˙=ωG∧R(2)
 其中
 
     
      
       
        
         
          ω
         
         
          G
         
        
        
         (
        
        
         t
        
        
         )
        
        
         ≜
        
        
         
          
           d
          
          
           
            ϕ
           
           
            G
           
          
         
         
          
           d
          
          
           t
          
         
        
       
       
         \bm{\omega}_{\mathcal{G}}(t)\triangleq \dfrac{{\rm d}\bm{\phi}_{\mathcal{G}}}{{\rm d}t} 
       
      
     ωG(t)≜dtdϕG
 是在全局坐标系中表示的角速度向量.
全局与局部的关系
     
      
       
        
         
          1
         
         
          2
         
        
        
         
          ω
         
         
          G
         
        
        
         ⊗
        
        
         q
        
        
         =
        
        
         
          q
         
         
          ˙
         
        
        
         =
        
        
         
          1
         
         
          2
         
        
        
         q
        
        
         ⊗
        
        
         
          ω
         
         
          L
         
        
          
        
         ⟹
          
        
         
          ω
         
         
          G
         
        
        
         =
        
        
         q
        
        
         ⊗
        
        
         
          ω
         
         
          L
         
        
        
         ⊗
        
        
         
          q
         
         
          ∗
         
        
        
         =
        
        
         R
        
        
         
          ω
         
         
          L
         
        
       
       
         \dfrac{1}{2}\bm{\omega}_{\mathcal{G}}\otimes \bold{q}=\dot{\bold{q}}= \dfrac{1}{2}\bold{q}\otimes \bm{\omega}_{\mathcal{L}}\\ \implies \bm{\omega}_{\mathcal{G}}=\bold{q}\otimes \bm{\omega}_{\mathcal{L}}\otimes \bold{q}^{\ast}=\bold{R} \bm{\omega}_{\mathcal{L}} 
       
      
     21ωG⊗q=q˙=21q⊗ωL⟹ωG=q⊗ωL⊗q∗=RωL
 类似的,考虑
    
     
      
       
        Δ
       
       
        ϕ
       
       
        ≈
       
       
        ω
       
       
        Δ
       
       
        t
       
      
      
       \Delta \bm{\phi} \approx \bm{\omega} \Delta t
      
     
    Δϕ≈ωΔt
 
     
      
       
        
         Δ
        
        
         
          ϕ
         
         
          G
         
        
        
         =
        
        
         q
        
        
         ⊗
        
        
         Δ
        
        
         
          ϕ
         
         
          L
         
        
        
         ⊗
        
        
         
          q
         
         
          ∗
         
        
        
         =
        
        
         R
        
        
         Δ
        
        
         
          ϕ
         
         
          L
         
        
       
       
         \Delta\bm{\phi}_{\mathcal{G}}=\bold{q}\otimes \Delta\bm{\phi}_{\mathcal{L}}\otimes \bold{q}^{\ast}=\bold{R} \Delta\bm{\phi}_{\mathcal{L}} 
       
      
     ΔϕG=q⊗ΔϕL⊗q∗=RΔϕL
 也就是说,我们可以使用四元数或旋转矩阵将角速率向量
    
     
      
       
        ω
       
      
      
       \bm{\omega}
      
     
    ω和小角扰动
    
     
      
       
        Δ
       
       
        ϕ
       
      
      
       \Delta \bm{\phi}
      
     
    Δϕ进行坐标系变换,就像它们是普通向量一样。
 由
    
     
      
       
        ω
       
       
        =
       
       
        u
       
       
        ω
       
      
      
       \bm{\omega} = \bold{u}\bm{\omega}
      
     
    ω=uω,或
    
     
      
       
        Δ
       
       
        ϕ
       
       
        =
       
       
        u
       
       
        Δ
       
       
        ϕ
       
      
      
       \Delta \bm{\phi} = \bold{u}\Delta\bm{\phi}
      
     
    Δϕ=uΔϕ且旋转不改变向量长度,可以得到
 
     
      
       
        
         
          u
         
         
          G
         
        
        
         =
        
        
         q
        
        
         ⊗
        
        
         
          u
         
         
          L
         
        
        
         ⊗
        
        
         
          q
         
         
          ∗
         
        
        
         =
        
        
         R
        
        
         
          u
         
         
          L
         
        
       
       
         \bold{u}_{\mathcal{G}}=\bold{q}\otimes \bold{u}_{\mathcal{L}}\otimes \bold{q}^{\ast}=\bold{R} \bold{u}_{\mathcal{L}} 
       
      
     uG=q⊗uL⊗q∗=RuL
旋转速度的时间积分
对局部旋转速度定义的微分方程为(1),对全局旋转速率定义的微分方程为(2)。通过对旋转速度的微分方程积分来完成以四元数形式积分旋转随时间的变化。在通常的情况下,角速度由局部传感器测量,从而在离散时间
    
     
      
       
        
         t
        
        
         n
        
       
       
        =
       
       
        n
       
       
        Δ
       
       
        t
       
      
      
       t_n = n\Delta t
      
     
    tn=nΔt时提供局部测量
    
     
      
       
        ω
       
       
        (
       
       
        
         t
        
        
         n
        
       
       
        )
       
      
      
       \bm{\omega}(t_n)
      
     
    ω(tn)。因为我们主要关注微分方程(1)。
 
     
      
       
        
         
          q
         
         
          ˙
         
        
        
         (
        
        
         t
        
        
         )
        
        
         =
        
        
         
          1
         
         
          2
         
        
        
         q
        
        
         (
        
        
         t
        
        
         )
        
        
         ⊗
        
        
         ω
        
        
         (
        
        
         t
        
        
         )
        
       
       
         \dot{\bold{q}}(t)=\dfrac{1}{2}\bold{q}(t)\otimes \bm{\omega}(t) 
       
      
     q˙(t)=21q(t)⊗ω(t)
 定义
    
     
      
       
        
         q
        
        
         n
        
       
       
        ≜
       
       
        q
       
       
        (
       
       
        
         t
        
        
         n
        
       
       
        )
       
       
        ,
       
       
        
         ω
        
        
         n
        
       
       
        ≜
       
       
        ω
       
       
        (
       
       
        
         t
        
        
         n
        
       
       
        )
       
      
      
       \bold{q}_n\triangleq \bold{q}(t_n),\bm{\omega}_n\triangleq \bm{\omega}(t_n)
      
     
    qn≜q(tn),ωn≜ω(tn),由泰勒展开可得:
 
     
      
       
        
         
          q
         
         
          
           n
          
          
           +
          
          
           1
          
         
        
        
         =
        
        
         
          q
         
         
          n
         
        
        
         +
        
        
         
          
           q
          
          
           ˙
          
         
         
          n
         
        
        
         Δ
        
        
         t
        
        
         +
        
        
         
          1
         
         
          
           2
          
          
           !
          
         
        
        
         
          
           q
          
          
           ¨
          
         
         
          n
         
        
        
         Δ
        
        
         
          t
         
         
          2
         
        
        
         +
        
        
         
          1
         
         
          
           3
          
          
           !
          
         
        
        
         
          q
         
         
          n
         
         
          
           (
          
          
           3
          
          
           )
          
         
        
        
         Δ
        
        
         
          t
         
         
          3
         
        
        
         +
        
        
         ⋯
        
       
       
         \bold{q}_{n+1}=\bold{q}_{n}+\dot{\bold{q}}_{n}\Delta t+\dfrac{1}{2!}\ddot{\bold{q}}_{n}\Delta t^{2}+\dfrac{1}{3!}{\bold{q}}^{(3)}_{n}\Delta t^{3}+\cdots 
       
      
     qn+1=qn+q˙nΔt+2!1q¨nΔt2+3!1qn(3)Δt3+⋯
 反复运用四元数导数的表达式,假设
    
     
      
       
        
         ω
        
        
         ¨
        
       
       
        =
       
       
        0
       
      
      
       \ddot{\bm{\omega}}=0
      
     
    ω¨=0,可以很容易的得到
    
     
      
       
        
         q
        
        
         n
        
       
      
      
       \bold{q}_n
      
     
    qn的逐次导数
 
     
      
       
        
         
          
           
            
             
              q
             
             
              ˙
             
            
            
             n
            
           
          
         
         
          
           
            
            
             =
            
            
             
              1
             
             
              2
             
            
            
             
              q
             
             
              n
             
            
            
             
              ω
             
             
              n
             
            
           
          
         
        
        
         
          
           
            
             
              q
             
             
              ¨
             
            
            
             n
            
           
          
         
         
          
           
            
            
             =
            
            
             
              1
             
             
              
               2
              
              
               2
              
             
            
            
             
              q
             
             
              n
             
            
            
             
              ω
             
             
              n
             
             
              2
             
            
            
             +
            
            
             
              1
             
             
              2
             
            
            
             
              q
             
             
              n
             
            
            
             
              ω
             
             
              ˙
             
            
           
          
         
        
        
         
          
           
            
             
              q
             
             
              ¨
             
            
            
             n
            
           
          
         
         
          
           
            
            
             =
            
            
             
              1
             
             
              
               2
              
              
               3
              
             
            
            
             
              q
             
             
              n
             
            
            
             
              ω
             
             
              n
             
             
              3
             
            
            
             +
            
            
             
              1
             
             
              
               2
              
              
               2
              
             
            
            
             
              q
             
             
              n
             
            
            
             
              ω
             
             
              ˙
             
            
            
             
              ω
             
             
              n
             
            
            
             +
            
            
             
              1
             
             
              2
             
            
            
             
              q
             
             
              n
             
            
            
             
              ω
             
             
              n
             
            
            
             
              ω
             
             
              ˙
             
            
           
          
         
        
        
         
          
           
            
             q
            
            
             n
            
            
             
              (
             
             
              i
             
             
              ⩾
             
             
              4
             
             
              )
             
            
           
          
         
         
          
           
            
            
             =
            
            
             
              1
             
             
              
               2
              
              
               i
              
             
            
            
             
              q
             
             
              n
             
            
            
             
              ω
             
             
              n
             
             
              i
             
            
            
             +
            
            
             ⋯
            
           
          
         
        
       
       
         \begin{aligned} \dot{\bold{q}}_{n}&=\dfrac{1}{2}\bold{q}_{n}\bm{\omega}_{n}\\ \ddot{\bold{q}}_{n}&=\dfrac{1}{2^{2}}\bold{q}_{n}\bm{\omega}_{n}^{2}+\dfrac{1}{2}\bold{q}_{n}\dot{\bm{\omega} } \\ \ddot{\bold{q}}_{n}&=\dfrac{1}{2^{3}}\bold{q}_{n}\bm{\omega}_{n}^{3}+\dfrac{1}{2^2}\bold{q}_{n}\dot{\bm{\omega} }\bm{\omega}_n+\dfrac{1}{2}\bold{q}_n\bm{\omega}_n\dot{\bm{\omega}}\\ \bold{q}_n^{(i\geqslant 4)}&=\dfrac{1}{2^i}\bold{q}_n\bm{\omega}_n^i+\cdots \end{aligned} 
       
      
     q˙nq¨nq¨nqn(i⩾4)=21qnωn=221qnωn2+21qnω˙=231qnωn3+221qnω˙ωn+21qnωnω˙=2i1qnωni+⋯
零阶积分
前向积分
 如果在
    
     
      
       
        [
       
       
        
         t
        
        
         n
        
       
       
        ,
       
       
        
         t
        
        
         
          n
         
         
          +
         
         
          1
         
        
       
       
        ]
       
      
      
       [t_n,t_{n+1}]
      
     
    [tn,tn+1]期间是匀角速度运动,即
    
     
      
       
        
         
          ω
         
         
          =
         
         
          0
         
        
        
         ˙
        
       
      
      
       \dot{\bm{\omega}=0}
      
     
    ω=0˙,则有
 
     
      
       
        
         
          q
         
         
          
           n
          
          
           +
          
          
           1
          
         
        
        
         =
        
        
         
          q
         
         
          n
         
        
        
         ⊗
        
        
         
          (
         
         
          1
         
         
          +
         
         
          
           1
          
          
           2
          
         
         
          
           ω
          
          
           n
          
         
         
          Δ
         
         
          t
         
         
          +
         
         
          
           1
          
          
           
            2
           
           
            !
           
          
         
         
          
           
            (
           
           
            
             1
            
            
             2
            
           
           
            
             ω
            
            
             n
            
           
           
            Δ
           
           
            t
           
           
            )
           
          
          
           2
          
         
         
          +
         
         
          
           1
          
          
           
            3
           
           
            !
           
          
         
         
          
           
            (
           
           
            
             1
            
            
             2
            
           
           
            
             ω
            
            
             n
            
           
           
            Δ
           
           
            t
           
           
            )
           
          
          
           3
          
         
         
          +
         
         
          ⋯
          
         
          )
         
        
       
       
         \bold{q}_{n+1}=\bold{q}_{n}\otimes \left( 1+\dfrac{1}{2}\bm{\omega}_{n}\Delta t+\dfrac{1}{2!}\left( \dfrac{1}{2}\bm{\omega}_{n}\Delta t\right) ^{2}+\dfrac{1}{3!}\left( \dfrac{1}{2}\bm{\omega}_{n}\Delta t\right) ^{3}+\cdots \right) 
       
      
     qn+1=qn⊗(1+21ωnΔt+2!1(21ωnΔt)2+3!1(21ωnΔt)3+⋯)
 这里我们很容易就可以识别出其中的泰勒展开级数就是
    
     
      
       
        
         e
        
        
         
          
           ω
          
          
           n
          
         
         
          Δ
         
         
          t
         
         
          /
         
         
          2
         
        
       
      
      
       e^{\bm{\omega}_n\Delta t/2}
      
     
    eωnΔt/2,这个指数对应于增量旋转为
    
     
      
       
        θ
       
       
        =
       
       
        ω
       
       
        Δ
       
       
        t
       
      
      
       \bm{\theta}=\bm{\omega} \Delta t
      
     
    θ=ωΔt
 
     
      
       
        
         
          e
         
         
          
           ω
          
          
           Δ
          
          
           t
          
          
           /
          
          
           2
          
         
        
        
         =
        
        
         
          ω
         
         
          Δ
         
         
          t
         
        
        
         =
        
        
         q
        
        
         {
        
        
         ω
        
        
         Δ
        
        
         t
        
        
         }
        
        
         =
        
        
         
          [
         
         
          
           
            
             
              
               cos
              
              
               
              
              
               (
              
              
               ∥
              
              
               ω
              
              
               ∥
              
              
               Δ
              
              
               t
              
              
               /
              
              
               2
              
              
               )
              
             
            
           
          
          
           
            
             
              
               
                ω
               
               
                
                 ∥
                
                
                 ω
                
                
                 ∥
                
               
              
              
               sin
              
              
               
              
              
               (
              
              
               ∥
              
              
               ω
              
              
               ∥
              
              
               Δ
              
              
               t
              
              
               /
              
              
               2
              
              
               )
              
             
            
           
          
         
         
          ]
         
        
       
       
         e^{\bm{\omega} \Delta t/2}={\rm \bm{\omega}\Delta t}=\bold{q}\{\bm{\omega} \Delta t\}= \begin{bmatrix} \cos(\Vert\bm{\omega}\Vert\Delta t/2)\\ \frac{\bm{\omega}}{\Vert\bm{\omega}\Vert}\sin(\Vert\bm{\omega}\Vert\Delta t/2) \end{bmatrix} 
       
      
     eωΔt/2=ωΔt=q{ωΔt}=[cos(∥ω∥Δt/2)∥ω∥ωsin(∥ω∥Δt/2)]
 因此,
 
     
      
       
        
         
          q
         
         
          
           n
          
          
           +
          
          
           1
          
         
        
        
         =
        
        
         
          q
         
         
          n
         
        
        
         ⊗
        
        
         q
        
        
         {
        
        
         
          ω
         
         
          n
         
        
        
         Δ
        
        
         t
        
        
         }
        
       
       
         \bold{q}_{n+1}=\bold{q}_n\otimes \bold{q}\{\bm{\omega}_n \Delta t\} 
       
      
     qn+1=qn⊗q{ωnΔt}
 反向积分
 我们也可以认为周期
    
     
      
       
        Δ
       
       
        t
       
      
      
       \Delta t
      
     
    Δt上的恒定角速度为
    
     
      
       
        
         ω
        
        
         
          n
         
         
          +
         
         
          1
         
        
       
      
      
       \bm{\omega}_{n+1}
      
     
    ωn+1,即周期结束时测量的角速度。用类似的方式在将
    
     
      
       
        
         q
        
        
         n
        
       
      
      
       \bold{q}_n
      
     
    qn在
    
     
      
       
        
         t
        
        
         
          n
         
         
          +
         
         
          1
         
        
       
      
      
       t_{n+1}
      
     
    tn+1时刻泰勒展开,可以得到
 
     
      
       
        
         
          q
         
         
          n
         
        
        
         =
        
        
         
          q
         
         
          
           n
          
          
           +
          
          
           1
          
         
        
        
         +
        
        
         
          
           q
          
          
           ˙
          
         
         
          
           n
          
          
           +
          
          
           1
          
         
        
        
         
          (
         
         
          −
         
         
          Δ
         
         
          t
         
         
          )
         
        
        
         +
        
        
         
          1
         
         
          
           2
          
          
           !
          
         
        
        
         
          
           q
          
          
           ¨
          
         
         
          
           n
          
          
           +
          
          
           1
          
         
        
        
         
          
           (
          
          
           −
          
          
           Δ
          
          
           t
          
          
           )
          
         
         
          2
         
        
        
         +
        
        
         
          1
         
         
          
           3
          
          
           !
          
         
        
        
         
          q
         
         
          
           n
          
          
           +
          
          
           1
          
         
         
          
           (
          
          
           3
          
          
           )
          
         
        
        
         
          
           (
          
          
           −
          
          
           Δ
          
          
           t
          
          
           )
          
         
         
          3
         
        
        
         +
        
        
         ⋯
        
       
       
         \bold{q}_{n}=\bold{q}_{n+1}+\dot{\bold{q}}_{n+1}\left( -\Delta t\right) +\dfrac{1}{2!}\ddot{\bold{q}}_{n+1}\left( -\Delta t\right) ^{2}+\dfrac{1}{3!}\bold{q}_{n+1}^{\left( 3\right) }\left( -\Delta t\right) ^{3}+\cdots 
       
      
     qn=qn+1+q˙n+1(−Δt)+2!1q¨n+1(−Δt)2+3!1qn+1(3)(−Δt)3+⋯
 类似的,假设
    
     
      
       
        
         ω
        
        
         ˙
        
       
       
        =
       
       
        0
       
      
      
       \dot{\bm{\omega}}=0
      
     
    ω˙=0
 
     
      
       
        
         
          q
         
         
          
           n
          
          
           +
          
          
           1
          
         
         
          
           (
          
          
           i
          
          
           )
          
         
        
        
         =
        
        
         
          q
         
         
          
           n
          
          
           +
          
          
           1
          
         
        
        
         ⊗
        
        
         (
        
        
         
          1
         
         
          2
         
        
        
         
          ω
         
         
          
           n
          
          
           +
          
          
           1
          
         
        
        
         
          )
         
         
          i
         
        
       
       
         {\bold{q}}^{(i)}_{n+1}=\bold{q}_{n+1}\otimes(\frac{1}{2}\bm{\omega}_{n+1})^i 
       
      
     qn+1(i)=qn+1⊗(21ωn+1)i
 于是
 
     
      
       
        
         
          
           
            
             q
            
            
             n
            
           
          
         
         
          
           
            
            
             =
            
            
             
              q
             
             
              
               n
              
              
               +
              
              
               1
              
             
            
            
             ⊗
            
            
             
              [
             
             
              
               ∑
              
              
               
                k
               
               
                =
               
               
                0
               
              
              
               ∞
              
             
             
              
               1
              
              
               
                k
               
               
                !
               
              
             
             
              
               
                (
               
               
                −
               
               
                
                 1
                
                
                 2
                
               
               
                
                 ω
                
                
                 
                  n
                 
                 
                  +
                 
                 
                  1
                 
                
               
               
                Δ
               
               
                t
               
               
                )
               
              
              
               k
              
             
             
              ]
             
            
           
          
         
        
        
         
          
           
          
         
         
          
           
            
            
             =
            
            
             
              q
             
             
              
               n
              
              
               +
              
              
               1
              
             
            
            
             ⊗
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             (
            
            
             −
            
            
             
              ω
             
             
              
               n
              
              
               +
              
              
               1
              
             
            
            
             Δ
            
            
             t
            
            
             )
            
           
          
         
        
        
         
          
           
              
            
             ⟹
              
            
             
              q
             
             
              
               n
              
              
               +
              
              
               1
              
             
            
           
          
         
         
          
           
            
            
             =
            
            
             
              q
             
             
              n
             
            
            
             ⊗
            
            
             
              E
             
             
              x
             
             
              p
             
            
            
             (
            
            
             
              ω
             
             
              
               n
              
              
               +
              
              
               1
              
             
            
            
             Δ
            
            
             t
            
            
             )
            
           
          
         
        
       
       
         \begin{aligned} \bold{q}_n&=\bold{q}_{n+1}\otimes\left[\sum_{k=0}^\infty \frac{1}{k!}\left(-\frac{1}{2}\bm{\omega}_{n+1}\Delta t\right)^k\right]\\ &=\bold{q}_{n+1}\otimes {\rm Exp}(-\bm{\omega}_{n+1}\Delta t) \\ \implies \bold{q}_{n+1}&=\bold{q}_n\otimes {\rm Exp}(\bm{\omega}_{n+1}\Delta t) \end{aligned} 
       
      
     qn⟹qn+1=qn+1⊗[k=0∑∞k!1(−21ωn+1Δt)k]=qn+1⊗Exp(−ωn+1Δt)=qn⊗Exp(ωn+1Δt)
 所以最终可得
 
     
      
       
        
         
          q
         
         
          
           n
          
          
           +
          
          
           1
          
         
        
        
         ≈
        
        
         
          q
         
         
          n
         
        
        
         ⊗
        
        
         q
        
        
         {
        
        
         
          ω
         
         
          
           n
          
          
           +
          
          
           1
          
         
        
        
         Δ
        
        
         t
        
        
         }
        
       
       
         \bold{q}_{n+1}\approx \bold{q}_n\otimes \bold{q}\{\bm{\omega}_{n+1}\Delta t\} 
       
      
     qn+1≈qn⊗q{ωn+1Δt}
 中点积分
 类似的,认为周期
    
     
      
       
        Δ
       
       
        t
       
      
      
       \Delta t
      
     
    Δt上的恒定角速度为中间角速度(不一定是周期中点角速度)
 
     
      
       
        
         
          ω
         
         
          ˉ
         
        
        
         =
        
        
         
          
           
            ω
           
           
            n
           
          
          
           +
          
          
           
            ω
           
           
            
             n
            
            
             +
            
            
             1
            
           
          
         
         
          2
         
        
       
       
         \bar{\bm{\omega}}=\frac{\bm{\omega}_{n}+\bm{\omega}_{n+1}}{2} 
       
      
     ωˉ=2ωn+ωn+1
 则有
 
     
      
       
        
         
          q
         
         
          
           n
          
          
           +
          
          
           1
          
         
        
        
         ≈
        
        
         
          q
         
         
          n
         
        
        
         ⊗
        
        
         q
        
        
         {
        
        
         
          ω
         
         
          ˉ
         
        
        
         Δ
        
        
         t
        
        
         }
        
       
       
         \bold{q}_{n+1}\approx \bold{q}_n\otimes \bold{q}\{\bar{\bm{\omega}}\Delta t\} 
       
      
     qn+1≈qn⊗q{ωˉΔt}



















