文章目录
- 0 前言
- 1 课题背景
- 2 具体实现
- 3 数据收集和处理
- 3 MobileNetV2网络
- 4 损失函数softmax 交叉熵
- 4.1 softmax函数
- 4.2 交叉熵损失函数
 
- 5 优化器SGD
- 6 最后
0 前言
🔥 优质竞赛项目系列,今天要分享的是
🚩 **基于深度学习的植物识别算法 **
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:3分
- 工作量:4分
- 创新点:4分
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
1 课题背景
植物在地球上是一种非常广泛的生命形式,直接关系到人类的生活环境,目前,植物识别主要依靠相关行业从业人员及有经验专家实践经验,工作量大、效率低。近年来,随着社会科技及经济发展越来越快,计算机硬件进一步更新,性能也日渐提高,数字图像采集设备应用广泛,设备存储空间不断增大,这样大量植物信息可被数字化。同时,基于视频的目标检测在模式识别、机器学习等领域得到快速发展,进而基于图像集分类方法研究得到发展。
 本项目基于深度学习实现图像植物识别。
2 具体实现

 
 
3 数据收集和处理
数据是深度学习的基石
 数据的主要来源有: 百度图片, 必应图片, 新浪微博, 百度贴吧, 新浪博客和一些专业的植物网站等
 爬虫爬取的图像的质量参差不齐, 标签可能有误, 且存在重复文件, 因此必须清洗。清洗方法包括自动化清洗, 半自动化清洗和手工清洗。
 自动化清洗包括:
- 滤除小尺寸图像.
- 滤除宽高比很大或很小的图像.
- 滤除灰度图像.
- 图像去重: 根据图像感知哈希.
半自动化清洗包括:
- 图像级别的清洗: 利用预先训练的植物/非植物图像分类器对图像文件进行打分, 非植物图像应该有较低的得分; 利用前一阶段的植物分类器对图像文件 (每个文件都有一个预标类别) 进行预测, 取预标类别的概率值为得分, 不属于原预标类别的图像应该有较低的得分. 可以设置阈值, 滤除很低得分的文件; 另外利用得分对图像文件进行重命名, 并在资源管理器选择按文件名排序, 以便于后续手工清洗掉非植物图像和不是预标类别的图像.
- 类级别的清洗
手工清洗: 人工判断文件夹下图像是否属于文件夹名所标称的物种, 这需要相关的植物学专业知识, 是最耗时且枯燥的环节, 但也凭此认识了不少的植物.
3 MobileNetV2网络
简介
MobileNet网络是Google最近提出的一种小巧而高效的CNN模型,其在accuracy和latency之间做了折中。
主要改进点
相对于MobileNetV1,MobileNetV2 主要改进点:
- 引入倒残差结构,先升维再降维,增强梯度的传播,显著减少推理期间所需的内存占用(Inverted Residuals)
- 去掉 Narrow layer(low dimension or depth) 后的 ReLU,保留特征多样性,增强网络的表达能力(Linear Bottlenecks)
- 网络为全卷积,使得模型可以适应不同尺寸的图像;使用 RELU6(最高输出为 6)激活函数,使得模型在低精度计算下具有更强的鲁棒性
- MobileNetV2 Inverted residual block 如下所示,若需要下采样,可在 DW 时采用步长为 2 的卷积
- 小网络使用小的扩张系数(expansion factor),大网络使用大一点的扩张系数(expansion factor),推荐是5~10,论文中 t = 6 t = 6t=6
倒残差结构(Inverted residual block )
ResNet的Bottleneck结构是降维->卷积->升维,是两边细中间粗
而MobileNetV2是先升维(6倍)-> 卷积 -> 降维,是沙漏形。
  区别于MobileNetV1,
区别于MobileNetV1,
 MobileNetV2的卷积结构如下:
 
 因为DW卷积不改变通道数,所以如果上一层的通道数很低时,DW只能在低维空间提取特征,效果不好。所以V2版本在DW前面加了一层PW用来升维。
同时V2去除了第二个PW的激活函数改用线性激活,因为激活函数在高维空间能够有效地增加非线性,但在低维空间时会破坏特征。由于第二个PW主要的功能是降维,所以不宜再加ReLU6。
 
 tensorflow相关实现代码
    import tensorflow as tf
    import numpy as np
    from tensorflow.keras import layers, Sequential, Model
    
    class ConvBNReLU(layers.Layer):
        def __init__(self, out_channel, kernel_size=3, strides=1, **kwargs):
            super(ConvBNReLU, self).__init__(**kwargs)
            self.conv = layers.Conv2D(filters=out_channel, 
                                      kernel_size=kernel_size, 
                                      strides=strides, 
                                      padding='SAME', 
                                      use_bias=False,
                                      name='Conv2d')
            self.bn = layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='BatchNorm')
            self.activation = layers.ReLU(max_value=6.0)   # ReLU6
            
        def call(self, inputs, training=False, **kargs):
            x = self.conv(inputs)
            x = self.bn(x, training=training)
            x = self.activation(x)
            
            return x
    class InvertedResidualBlock(layers.Layer):
        def __init__(self, in_channel, out_channel, strides, expand_ratio, **kwargs):
            super(InvertedResidualBlock, self).__init__(**kwargs)
            self.hidden_channel = in_channel * expand_ratio
            self.use_shortcut = (strides == 1) and (in_channel == out_channel)
            
            layer_list = []
            # first bottleneck does not need 1*1 conv
            if expand_ratio != 1:
                # 1x1 pointwise conv
                layer_list.append(ConvBNReLU(out_channel=self.hidden_channel, kernel_size=1, name='expand'))
            layer_list.extend([
                
                # 3x3 depthwise conv 
                layers.DepthwiseConv2D(kernel_size=3, padding='SAME', strides=strides, use_bias=False, name='depthwise'),
                layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='depthwise/BatchNorm'),
                layers.ReLU(max_value=6.0),
                
                #1x1 pointwise conv(linear) 
                # linear activation y = x -> no activation function
                layers.Conv2D(filters=out_channel, kernel_size=1, strides=1, padding='SAME', use_bias=False, name='project'),
                layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='project/BatchNorm')
            ])
            
            self.main_branch = Sequential(layer_list, name='expanded_conv')
        
        def call(self, inputs, **kargs):
            if self.use_shortcut:
                return inputs + self.main_branch(inputs)
            else:
                return self.main_branch(inputs)  
 
4 损失函数softmax 交叉熵
4.1 softmax函数
Softmax函数由下列公式定义
 
 softmax 的作用是把 一个序列,变成概率。

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,所有概率的和将等于1。
python实现
def softmax(x):
    shift_x = x - np.max(x)    # 防止输入增大时输出为nan
    exp_x = np.exp(shift_x)
    return exp_x / np.sum(exp_x)
PyTorch封装的Softmax()函数
dim参数:
-  dim为0时,对所有数据进行softmax计算 
-  dim为1时,对某一个维度的列进行softmax计算 
-  dim为-1 或者2 时,对某一个维度的行进行softmax计算 import torch x = torch.tensor([2.0,1.0,0.1]) x.cuda() outputs = torch.softmax(x,dim=0) print("输入:",x) print("输出:",outputs) print("输出之和:",outputs.sum())
4.2 交叉熵损失函数
定义如下:
 
 python实现
def cross_entropy(a, y):
    return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))
 
# tensorflow version
loss = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y), reduction_indices=[1]))
 
# numpy version
loss = np.mean(-np.sum(y_*np.log(y), axis=1))
PyTorch实现
 交叉熵函数分为二分类(torch.nn.BCELoss())和多分类函数(torch.nn.CrossEntropyLoss()
    # 二分类 损失函数
    loss = torch.nn.BCELoss()
    l = loss(pred,real)
    # 多分类损失函数
    loss = torch.nn.CrossEntropyLoss()
5 优化器SGD
简介
 SGD全称Stochastic Gradient Descent,随机梯度下降,1847年提出。每次选择一个mini-
 batch,而不是全部样本,使用梯度下降来更新模型参数。它解决了随机小批量样本的问题,但仍然有自适应学习率、容易卡在梯度较小点等问题。
 
 pytorch调用方法:
torch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False)
相关代码:
    def step(self, closure=None):
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()
        for group in self.param_groups:
            weight_decay = group['weight_decay'] # 权重衰减系数
            momentum = group['momentum'] # 动量因子,0.9或0.8
            dampening = group['dampening'] # 梯度抑制因子
            nesterov = group['nesterov'] # 是否使用nesterov动量
            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad.data
                if weight_decay != 0: # 进行正则化
                	# add_表示原处改变,d_p = d_p + weight_decay*p.data
                    d_p.add_(weight_decay, p.data)
                if momentum != 0:
                    param_state = self.state[p] # 之前的累计的数据,v(t-1)
                    # 进行动量累计计算
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
                    else:
                    	# 之前的动量
                        buf = param_state['momentum_buffer']
                        # buf= buf*momentum + (1-dampening)*d_p
                        buf.mul_(momentum).add_(1 - dampening, d_p)
                    if nesterov: # 使用neterov动量
                    	# d_p= d_p + momentum*buf
                        d_p = d_p.add(momentum, buf)
                    else:
                        d_p = buf
				# p = p - lr*d_p
                p.data.add_(-group['lr'], d_p)
        return loss
6 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate



















