基于深度学习的水果识别 计算机竞赛

news2025/7/19 11:23:33

1 前言

Hi,大家好,这里是丹成学长,今天做一个 基于深度学习的水果识别demo

这是一个较为新颖的竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 开发简介

深度学习作为机器学习领域内新兴并且蓬勃发展的一门学科, 它不仅改变着传统的机器学习方法, 也影响着我们对人类感知的理解,
已经在图像识别和语音识别等领域取得广泛的应用。 因此, 本文在深入研究深度学习理论的基础上, 将深度学习应用到水果图像识别中,
以此来提高了水果图像的识别性能。

3 识别原理

3.1 传统图像识别原理

传统的水果图像识别系统的一般过程如下图所示,主要工作集中在图像预处理和特征提取阶段。

在大多数的识别任务中, 实验所用图像往往是在严格限定的环境中采集的, 消除了外界环境对图像的影响。 但是实际环境中图像易受到光照变化、 水果反光、
遮挡等因素的影响, 这在不同程度上影响着水果图像的识别准确率。

在传统的水果图像识别系统中, 通常是对水果的纹理、 颜色、 形状等特征进行提取和识别。

在这里插入图片描述

3.2 深度学习水果识别

CNN 是一种专门为识别二维特征而设计的多层神经网络, 它的结构如下图所示,这种结构对平移、 缩放、 旋转等变形具有高度的不变性。

在这里插入图片描述

学长本次采用的 CNN 架构如图:
在这里插入图片描述

4 数据集

  • 数据库分为训练集(train)和测试集(test)两部分

  • 训练集包含四类apple,orange,banana,mixed(多种水果混合)四类237张图片;测试集包含每类图片各两张。图片集如下图所示。

  • 图片类别可由图片名称中提取。

训练集图片预览

在这里插入图片描述

测试集预览
在这里插入图片描述

数据集目录结构
在这里插入图片描述

5 部分关键代码

5.1 处理训练集的数据结构

import os
import pandas as pd    

train_dir = './Training/'
test_dir = './Test/'
fruits = []
fruits_image = []

for i in os.listdir(train_dir):
    for image_filename in os.listdir(train_dir + i):
        fruits.append(i) # name of the fruit
        fruits_image.append(i + '/' + image_filename)
train_fruits = pd.DataFrame(fruits, columns=["Fruits"])
train_fruits["Fruits Image"] = fruits_image

print(train_fruits)

5.2 模型网络结构

import matplotlib.pyplot as plt
​    import seaborn as sns
​    from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
​    from glob import glob
​    from keras.models import Sequential
​    from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Flatten, Dense
​    img = load_img(train_dir + "Cantaloupe 1/r_234_100.jpg")
​    plt.imshow(img)
​    plt.axis("off")
​    plt.show()
​    

    array_image = img_to_array(img)
    
    # shape (100,100)
    print("Image Shape --> ", array_image.shape)
    
    # 131个类目
    fruitCountUnique = glob(train_dir + '/*' )
    numberOfClass = len(fruitCountUnique)
    print("How many different fruits are there --> ",numberOfClass)
    
    # 构建模型
    model = Sequential()
    model.add(Conv2D(32,(3,3),input_shape = array_image.shape))
    model.add(Activation("relu"))
    model.add(MaxPooling2D())
    model.add(Conv2D(32,(3,3)))
    model.add(Activation("relu"))
    model.add(MaxPooling2D())
    model.add(Conv2D(64,(3,3)))
    model.add(Activation("relu"))
    model.add(MaxPooling2D())
    model.add(Flatten())
    model.add(Dense(1024))
    model.add(Activation("relu"))
    model.add(Dropout(0.5))
    
    # 区分131类
    model.add(Dense(numberOfClass)) # output
    model.add(Activation("softmax"))
    model.compile(loss = "categorical_crossentropy",
    
                  optimizer = "rmsprop",
    
                  metrics = ["accuracy"])
    
    print("Target Size --> ", array_image.shape[:2])


## 

5.3 训练模型

    
​    train_datagen = ImageDataGenerator(rescale= 1./255,
​                                       shear_range = 0.3,
​                                       horizontal_flip=True,
​                                       zoom_range = 0.3)
​    

    test_datagen = ImageDataGenerator(rescale= 1./255)
    epochs = 100
    batch_size = 32
    train_generator = train_datagen.flow_from_directory(
                    train_dir,
                    target_size= array_image.shape[:2],
                    batch_size = batch_size,
                    color_mode= "rgb",
                    class_mode= "categorical")
    
    test_generator = test_datagen.flow_from_directory(
                    test_dir,
                    target_size= array_image.shape[:2],
                    batch_size = batch_size,
                    color_mode= "rgb",
                    class_mode= "categorical")
    
    for data_batch, labels_batch in train_generator:
        print("data_batch shape --> ",data_batch.shape)
        print("labels_batch shape --> ",labels_batch.shape)
        break
    
    hist = model.fit_generator(
            generator = train_generator,
            steps_per_epoch = 1600 // batch_size,
            epochs=epochs,
            validation_data = test_generator,
            validation_steps = 800 // batch_size)
    
    #保存模型 model_fruits.h5
    model.save('model_fruits.h5')


顺便输出训练曲线

    #展示损失模型结果
​    plt.figure()
​    plt.plot(hist.history["loss"],label = "Train Loss", color = "black")
​    plt.plot(hist.history["val_loss"],label = "Validation Loss", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
​    plt.title("Model Loss", color = "darkred", size = 13)
​    plt.legend()
​    plt.show()#展示精确模型结果
    plt.figure()
    plt.plot(hist.history["accuracy"],label = "Train Accuracy", color = "black")
    plt.plot(hist.history["val_accuracy"],label = "Validation Accuracy", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
    plt.title("Model Accuracy", color = "darkred", size = 13)
    plt.legend()
    plt.show()


![在这里插入图片描述](https://img-blog.csdnimg.cn/686ace7db27c4145837ec2e09e8ad917.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBARGFuQ2hlbmctc3R1ZGlv,size_17,color_FFFFFF,t_70,g_se,x_16)

在这里插入图片描述

6 识别效果

from tensorflow.keras.models import load_model
import os
import pandas as pd
from keras.preprocessing.image import ImageDataGenerator,img_to_array, load_img
import cv2,matplotlib.pyplot as plt,numpy as np
from keras.preprocessing import image

train_datagen = ImageDataGenerator(rescale= 1./255,
                                    shear_range = 0.3,
                                    horizontal_flip=True,
                                    zoom_range = 0.3)

model = load_model('model_fruits.h5')
batch_size = 32
img = load_img("./Test/Apricot/3_100.jpg",target_size=(100,100))
plt.imshow(img)
plt.show()

array_image = img_to_array(img)
array_image = array_image * 1./255
x = np.expand_dims(array_image, axis=0)
images = np.vstack([x])
classes = model.predict_classes(images, batch_size=10)
print(classes)
train_dir = './Training/'

train_generator = train_datagen.flow_from_directory(
        train_dir,
        target_size= array_image.shape[:2],
        batch_size = batch_size,
        color_mode= "rgb",
        class_mode= "categorical”)
print(train_generator.class_indices)

在这里插入图片描述

    fig = plt.figure(figsize=(16, 16))
    axes = []
    files = []
    predictions = []
    true_labels = []
    rows = 5
    cols = 2
# 随机选择几个图片
def getRandomImage(path, img_width, img_height):
    """function loads a random image from a random folder in our test path"""
    folders = list(filter(lambda x: os.path.isdir(os.path.join(path, x)), os.listdir(path)))
    random_directory = np.random.randint(0, len(folders))
    path_class = folders[random_directory]
    file_path = os.path.join(path, path_class)
    file_names = [f for f in os.listdir(file_path) if os.path.isfile(os.path.join(file_path, f))]
    random_file_index = np.random.randint(0, len(file_names))
    image_name = file_names[random_file_index]
    final_path = os.path.join(file_path, image_name)
    return image.load_img(final_path, target_size = (img_width, img_height)), final_path, path_class

def draw_test(name, pred, im, true_label):
    BLACK = [0, 0, 0]
    expanded_image = cv2.copyMakeBorder(im, 160, 0, 0, 300, cv2.BORDER_CONSTANT, value=BLACK)
    cv2.putText(expanded_image, "predicted: " + pred, (20, 60), cv2.FONT_HERSHEY_SIMPLEX,
        0.85, (255, 0, 0), 2)
    cv2.putText(expanded_image, "true: " + true_label, (20, 120), cv2.FONT_HERSHEY_SIMPLEX,
        0.85, (0, 255, 0), 2)
    return expanded_image
IMG_ROWS, IMG_COLS = 100, 100

# predicting images
for i in range(0, 10):
    path = "./Test"
    img, final_path, true_label = getRandomImage(path, IMG_ROWS, IMG_COLS)
    files.append(final_path)
    true_labels.append(true_label)
    x = image.img_to_array(img)
    x = x * 1./255
    x = np.expand_dims(x, axis=0)
    images = np.vstack([x])
    classes = model.predict_classes(images, batch_size=10)
    predictions.append(classes)

class_labels = train_generator.class_indices
class_labels = {v: k for k, v in class_labels.items()}
class_list = list(class_labels.values())

for i in range(0, len(files)):
    image = cv2.imread(files[i])
    image = draw_test("Prediction", class_labels[predictions[i][0]], image, true_labels[i])
    axes.append(fig.add_subplot(rows, cols, i+1))
    plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    plt.grid(False)
    plt.axis('off')
plt.show()

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1158422.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Web3时代:探索DAO的未来之路

Web3 的兴起不仅代表着技术进步,更是对人类协作、创新和价值塑造方式的一次重大思考。在 Web3 时代,社区不再仅仅是共同兴趣的聚集点,而变成了一个价值交流和创新的平台。 去中心化:超越技术的革命 去中心化不仅仅是 Web3 的技术…

【运维心得】系统欢迎界面卡住的罪魁祸首

系统在登录过程中,有个欢迎界面,一般情况下,即使性能再查的电脑,大概1~3分钟也就进入系统桌面了。但这次的问题比较奇怪,始终停留欢迎界面,让人误以为是系统问题。 但到最后出现了反转&#xf…

商城性能测试LoadRunner快速上手教学

软件介绍 Virtual User Generator ,记录用户流程并创建一个自动化性能测试脚本Controller,单一控制点,轻松、有效地控制所有Vuser,执行期间监控场景性能Analysis,生成性能测试报告,以图表形式呈现。 由于…

一键添加色彩变幻效果,视频剪辑从未如此简单!

在视频制作过程中,给视频添加特效是必不可少的环节。而其中,色彩变幻效果作为一种常用的特效,能够为视频增添独特的氛围和视觉冲击力。然而,对于许多初学者来说,如何批量给视频添加色彩变幻效果特效功能却是一个难题。…

从0到1了解metasploit上线原理

在渗透的过程中拿到权限后通常会进行上线cs/msf的操作,我们了解上线的原理后,无论是对编写远控,还是绕过杀软帮助都很大。 前言 在渗透的过程中拿到权限后通常会进行上线cs/msf的操作,我们了解上线的原理后,无论是编…

不容错过的2023年度线框图工具Top 8

线框图工具可以快速呈现设计师的灵感。在任何项目的开始阶段,选择一个方便的线框图工具都是最好的选择。如今,线框图工具的出现并不夸张。各种工具都很容易获得,但选择太多确实很容易给设计师的选择带来困难。 买东西都讲性价比,…

最新 IntelliJ IDEA 旗舰版和社区版下载安装教程(图解)

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…

一台服务器安装两个mysql、重置数据库用于测试使用

文章目录 一、切数据库数据存储文件夹已经存在数据库数据文件夹新建数据库数据文件夹 二、安装第二个mysql安装新数据库初始化数据库数据启动数据库关闭数据库 三、mysqld_multi单机多实例部署参考文档 一、切数据库数据存储文件夹 这个方法可以让你不用安装新的数据库&#x…

信号灯集,消息队列

信号灯集 1、概念 信号灯(semaphore),也叫信号量。它是不同进程间或一个给定进程内部不同线程间同步的机制;System V的信号灯是一个或者多个信号灯的一个集合。其中的每一个都是单独的计数信号灯。而Posix信号灯指的是单个计数信号灯。 通过信号灯集实现…

双网卡下,如何指定网卡进行通讯

背景 LabVIEW进行网络TCP网络通讯,通过WIFI进行数据传输。刚好工作站有两个网口,一个连接外网,一个连接无线路由器,然后数据节点可以连接到无线路由。但时LabVIEW默认运行的时候,显示的ip地址是外网的,那这…

主播直播美颜SDK:提升颜值的秘诀

当下,主播们往往依赖于主播直播美颜SDK,这个技术工具为他们提供了一个让自己看起来更好看的机会。本文将深入探讨主播直播美颜SDK的工作原理、应用和影响,揭示提升颜值的秘诀。 一、主播直播美颜SDK是什么? 主播直播美颜SDK是一…

【unity3D】Dropdown组件 — 如何使用下拉菜单

💗 未来的游戏开发程序媛,现在的努力学习菜鸡 💦本专栏是我关于游戏开发的学习笔记 🈶本篇是unity的Dropdown组件 Dropdown组件 基础知识详细介绍 基础知识 介绍:Unity的Dropdown组件是一种UI控件,用于在下…

【数据安全好书推荐】学习数据安全不知道看哪本?这篇文章助你赢在起跑线上!文末送书5本

🎬 鸽芷咕:个人主页 🔥 个人专栏:《粉丝福利》 《C语言进阶篇》 ⛺️生活的理想,就是为了理想的生活! 文章目录 ⛳️ 写在前面参与规则引入《数据要素安全流通》《Python数据挖掘:入门、进阶与实用案例分析》《数据保…

log4j 日志的简单使用

文章底部有个人公众号:热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享? 踩过的坑没必要让别人在再踩,自己复盘也能加深记忆。利己利人、所谓双赢。 前言 System.out.println("这是我的测…

P1169 [ZJOI2007] 棋盘制作

Portal. 悬线法。 悬线法,主要用来解决最大子矩形问题,由王知昆在 IOI2003 国家集训队论文中提出。 所谓“最大子矩形问题”,就是在一个给定的矩形网格中有一些障碍点,要找出网格内部不包含任何障碍点,且边界与坐标…

大型企业如何通过低代码平台提高开发效率和降低成本?

云计算、大数据、人工智能、物联网风口之下,企业数字化转型如同被按下了快进键。为快速攻破转型路上的技术关,企业纷纷把目光投向了低代码开发平台,希望可以用最短的时间,开发出最适合企业发展的应用。 集团企业需要什么样的数字化…

高等数学啃书汇总重难点(十)重积分

方法性的一章,看着唬人,实际上定积分学得熟练,就可以很轻松的掌握这一章的内容,重点在于计算各种坐标下的二重或三重积分~ 1.几何意义 2.定义 3.性质 4.直角坐标计算二重积分 5.极坐标计算二重积分 6.三重积分 7.重积分的应用

Mac-Java开发环境安装(JDK和Maven)

JDK安装 1、访问oracle官网,下载jdk 点击下载链接:https://www.oracle.com/java/technologies/downloads/#java11-mac 选择Mac版本,下载dmg 打勾点击下载,跳转登陆,没有就注册,输入账号密码即可下载成功…

面试高频题:你如何知道HashMap正在进行扩容操作?

亲爱的小伙伴们,大家好!我是小米,一个热爱技术分享的小编。今天,我们将一起来探讨一个程序员们在日常工作中常常遇到的问题——如何知道HashMap正在扩容。 HashMap,作为Java中最常用的数据结构之一,经常在…

“眶”护光明,爱尔眼科眼眶病专家团在方寸之间寻找光明密码

2023年8月,右眼罹患I型神经纤维瘤病的患儿孩子小豪(化名)在父亲熊勇的带领下,由爱尔眼科四川眼科医院孙丰源教授主刀,成功接受眼眶肿瘤切除术,保住了眼球和视力,这是生病10年来专家团队为其实施的第3次治疗。 据了解&a…