基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别 计算机竞赛

news2025/7/16 11:58:59

文章目录

  • 0 前言
  • 1 背景
  • 2 算法原理
    • 2.1 动物识别方法概况
    • 2.2 常用的网络模型
      • 2.2.1 B-CNN
      • 2.2.2 SSD
  • 3 SSD动物目标检测流程
  • 4 实现效果
  • 5 部分相关代码
    • 5.1 数据预处理
    • 5.2 构建卷积神经网络
    • 5.3 tensorflow计算图可视化
    • 5.4 网络模型训练
    • 5.5 对猫狗图像进行2分类
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的动物识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 背景

目前,由于计算机能力和相关理论的发展获得了重大突破,基于深度学习的图像检测与识别技术已经广泛应用到人们的生产生活中。学长将深度学习的技术应用到野生动物图像识别中,优化了传统的识别方法,形成对野生动物图像更为准确的识别,为实现高效的野生动物图像识别提供了可能。不同于传统的野生动物识别,基于深度学习的野生动物识别技术可以捕获到野生动物更加细致的信息,有利于对野生动物进行更加准确的识别和研究。因此,对基于深度学习的野生动物识别和研究,可以更好的帮助社会管理者和政府全面有效的对野生动物进行保护和监管,这也正是保护和识别野生动物的关键,同时这对整个自然和社会的和谐发展具有极大的推动作用。

2 算法原理

2.1 动物识别方法概况

基于人工特征的野生动物识别方法主要通过人工对野生动物图像中具有辨识度的特征信息进行提取,并通过特征比对的方式就可以对野生动物所属的类别进行识别判断。

在深度学习技术普及之前,传统的数字图像处理技术与传统机器学习技术一直是研究的热点。传统的数字图像处理技术有模块分割、降低噪声点、边缘检测等方法。传统的机器学习技术有支持向量机、随机森林算法、BP
神经网络算法等。

深度学习技术是通过计算机模拟人类大脑的分层表达结构来建立网络模型,从原始数据集中对相关信息逐层提取。之后通过建立相应的神经网络对数据进行学习和分析,从而提高对目标预测和识别的准确率。如今,深度学习技术已经相对成熟,在对目标进行特征提取方面,卷积神经网络技术逐渐取代了传统的图像处理技术,并且在人类的生产生活中得到了广泛应用,这为研究野生动物更高效的识别方法奠定了基础。

2.2 常用的网络模型

图像识别是指对原始图像进行整体分析来达到预测原始图像所属类别的技术。计算机视觉领域中对图像识别技术进行了优化,与此同时,深度学习技术也对图像识别领域展开了突破。目前在图像识别领域中,研究人员开始使用深度学习的技术,并通过在实际应用中发现,基于深度学习的识别技术比传统的识别技术效果更好,且更具有优势。

2.2.1 B-CNN

双线性卷积神经网络(Bilinear
CNN,B-CNN)[34]是用两个卷积神经网络对图像进行特征提取,然后使用相应的函数将得到所有特征进行组合,组合的数据带入到分类器中进行分类。

在这里插入图片描述

2.2.2 SSD

经典的 SSD 模型是由经典网络和特征提取网络组成。

通过引入性能更好的特征提取网络对 SSD
目标检测模型进行了优化。Fu[49]等人提出了增加卷积神经网络层数和深度的方法用于提高识别准确率。通过实际应用之后,发现该方法识别准确率确实得到了一定程度的提高,但是模型结构却越来越复杂,同时对深层次的网络训练也越来越困难。

在这里插入图片描述

3 SSD动物目标检测流程

在这里插入图片描述

学长首先对 DenseNet-169 网络进行初始化,使用 DenseNet-169 网络作为目标检测的前置网络结构,并运用迁移学习的方法对
DenseNet-169 进行预训练,并将Snapshot Serengeti数据集下的权重值迁移到野生动物检测任务中,使数据集的训练速度得到提升。将
DenseNet-169 作为前置网络置于 SSD 中的目标提取检测网络之前,更换完前置网络的 SSD 目标检测网络依然完整。

4 实现效果

在这里插入图片描述
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

5 部分相关代码

5.1 数据预处理


    import cv2 as cv
    import os
    import numpy as np
    

    import random
    import pickle
    
    import time
    
    start_time = time.time()
    
    data_dir = './data'
    batch_save_path = './batch_files'
    
    # 创建batch文件存储的文件夹
    os.makedirs(batch_save_path, exist_ok=True)
    
    # 图片统一大小:100 * 100
    # 训练集 20000:100个batch文件,每个文件200张图片
    # 验证集 5000:一个测试文件,测试时 50张 x 100 批次
    
    # 进入图片数据的目录,读取图片信息
    all_data_files = os.listdir(os.path.join(data_dir, 'train/'))
    
    # print(all_data_files)
    
    # 打算数据的顺序
    random.shuffle(all_data_files)
    
    all_train_files = all_data_files[:20000]
    all_test_files = all_data_files[20000:]
    
    train_data = []
    train_label = []
    train_filenames = []
    
    test_data = []
    test_label = []
    test_filenames = []
    
    # 训练集
    for each in all_train_files:
        img = cv.imread(os.path.join(data_dir,'train/',each),1)
        resized_img = cv.resize(img, (100,100))
    
        img_data = np.array(resized_img)
        train_data.append(img_data)
        if 'cat' in each:
            train_label.append(0)
        elif 'dog' in each:
            train_label.append(1)
        else:
            raise Exception('%s is wrong train file'%(each))
        train_filenames.append(each)
    
    # 测试集
    for each in all_test_files:
        img = cv.imread(os.path.join(data_dir,'train/',each), 1)
        resized_img = cv.resize(img, (100,100))
    
        img_data = np.array(resized_img)
        test_data.append(img_data)
        if 'cat' in each:
            test_label.append(0)
        elif 'dog' in each:
            test_label.append(1)
        else:
            raise Exception('%s is wrong test file'%(each))
        test_filenames.append(each)
    
    print(len(train_data), len(test_data))
    
    # 制作100个batch文件
    start = 0
    end = 200
    for num in range(1, 101):
        batch_data = train_data[start: end]
        batch_label = train_label[start: end]
        batch_filenames = train_filenames[start: end]
        batch_name = 'training batch {} of 15'.format(num)
    
        all_data = {
        'data':batch_data,
        'label':batch_label,
        'filenames':batch_filenames,
        'name':batch_name
        }
    
        with open(os.path.join(batch_save_path, 'train_batch_{}'.format(num)), 'wb') as f:
            pickle.dump(all_data, f)
    
        start += 200
        end += 200
    
    # 制作测试文件
    all_test_data = {
        'data':test_data,
        'label':test_label,
        'filenames':test_filenames,
        'name':'test batch 1 of 1'
        }
    
    with open(os.path.join(batch_save_path, 'test_batch'), 'wb') as f:
        pickle.dump(all_test_data, f)
    
    end_time = time.time()
    print('制作结束, 用时{}秒'.format(end_time - start_time))



5.2 构建卷积神经网络

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码


    conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
    conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
    pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
    conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
    conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
    pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
    conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
    conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
    pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
    conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
    conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
    pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')
    

    flatten = tf.layers.flatten(pool4)
    fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
    fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
    fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
    fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
    fc3 = tf.layers.dense(fc2, 2, None)



5.3 tensorflow计算图可视化


    self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')
    self.y = tf.placeholder(tf.int64, [None], 'output_data')
    self.keep_prob = tf.placeholder(tf.float32)
    

    # 图片输入网络中
    fc = self.conv_net(self.x, self.keep_prob)
    self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)
    self.y_ = tf.nn.softmax(fc) # 计算每一类的概率
    self.predict = tf.argmax(fc, 1)
    self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))
    self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
    self.saver = tf.train.Saver(max_to_keep=1)



最后的saver是要将训练好的模型保存到本地。

5.4 网络模型训练

然后编写训练部分的代码,训练步骤为1万步


    acc_list = []
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
    

        for i in range(TRAIN_STEP):
            train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)
    
            eval_ops = [self.loss, self.acc, self.train_op]
            eval_ops_results = sess.run(eval_ops, feed_dict={
                self.x:train_data,
                self.y:train_label,
                self.keep_prob:0.7
            })
            loss_val, train_acc = eval_ops_results[0:2]
    
            acc_list.append(train_acc)
            if (i+1) % 100 == 0:
                acc_mean = np.mean(acc_list)
                print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(
                    i+1,loss_val,train_acc,acc_mean
                ))
            if (i+1) % 1000 == 0:
                test_acc_list = []
                for j in range(TEST_STEP):
                    test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)
                    acc_val = sess.run([self.acc],feed_dict={
                        self.x:test_data,
                        self.y:test_label,
                        self.keep_prob:1.0
                })
                test_acc_list.append(acc_val)
                print('[Test ] step:{0}, mean_acc:{1:.5}'.format(
                    i+1, np.mean(test_acc_list)
                ))
        # 保存训练后的模型
        os.makedirs(SAVE_PATH, exist_ok=True)
        self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')



训练结果如下:

在这里插入图片描述

5.5 对猫狗图像进行2分类

在这里插入图片描述

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1157857.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于Amazon Route 53 Resolver 多区域混合 DNS 部署最佳实践

DNS 可为互联网提供域名解析服务,对任何网络应用都十分关键。无论是部署于企业的私有云、公有云还是混合云环境下的 IT 基础设施,通常都会依赖 DNS 记录来完成服务之间或对外的访问。在一个完整的混合云环境中,不仅需要考虑网络层的连通性、可…

查看局域网内另外一个电脑屏幕

查看局域网内另外一个电脑屏幕是一个相对简单但实用的技术。在局域网中,我们可以使用远程桌面、网络发现和共享、软件等技术来实现这一目标。 今天重点讲解一下,如何通过域之盾软件来查看另一个电脑屏幕: 1、部署软件,安装提示一…

【前端系列】Element-UI 悟道

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

基于orangepi lts 3 的延时摄影程序

利用orangepi 摄像头 使用python写一个延时摄影的程序。 一,思路 orangepi 外接摄像头,利用opencv,按照一定间隔取图,再利用opencv 将图片编码成视频。 利用mqtt进行通讯,可以写一个app进行控制。 二,代…

layui form表单 label和input宽度

情况是这样的&#xff0c;表单里有多个输入框&#xff0c;只有个别label 是长的&#xff0c;我就想调整一下个别长的&#xff0c;其它不变 <div class"layui-form-item"><label class"layui-form-label">是否分标分量:</label><div …

计算机毕业设计选题推荐-校园失物招领微信小程序/安卓APP-项目实战

✨作者主页&#xff1a;IT毕设梦工厂✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…

没搞错吧?阿里云99元一年服务器老用户可以买!

阿里云老用户优惠服务器99元/年&#xff0c;谁再说阿里云不好我给谁急&#xff0c;云服务器ECS配置为经济型e实例&#xff0c;2核CPU、2G内存、3M固定带宽、40G ESSD entry 系统盘&#xff0c;老用户优惠价99元一年&#xff0c;老用户可以买&#xff0c;当然新用户也可以买&…

轻松玩转人物风格迁移!DualStyleGAN让你一键生成各种风格人物图片!【一个有趣的开源项目】

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推荐--…

OOM如何处理

1. OOM是什么 OOM是Out of Memory的缩写&#xff0c;意思是内存溢出。它是指程序在申请内存时&#xff0c;系统可分配的内存已不足&#xff0c;从而导致程序运行失败。 2. OOM发生的一些情况 Java heap space 1.1 解释说明 当堆内存&#xff08;Heap Space&#xff09;没有足…

使用VS2017打包安装程序如何修改默认安装路径

步骤如下&#xff1a; 首先找到安装项目 打开文件系统 点击鼠标右键&#xff0c;view-文件系统。这时打开文件系统 找到Application Folder的属性窗口 修改DefaultLocation的属性 如果想改变默认的安装路径&#xff0c;修改DefaultLocation的属性。 去掉计算机的名称。 完…

2023世界传感器大会即将开启,汉威科技向全球发出邀请

由河南省政府、中国科学技术协会主办&#xff0c;郑州市人民政府、中国仪器仪表学会、河南省工业和信息化厅、河南省科学技术协会承办的“2023世界传感器大会”将于11月5日~7日在郑州国际会展中心举办。 传感器是链接数字世界与物理世界的桥梁&#xff0c;是万物互联、智慧化时…

pytorch复现_NMS

NMS&#xff08;非极大值抑制&#xff09;阈值是用于控制在一组重叠的边界框中保留哪些边界框的参数。当检测或识别算法生成多个边界框可能涵盖相同物体时&#xff0c;NMS用于筛选出最相关的边界框&#xff0c;通常是根据它们的置信度分数。 具体来说&#xff0c;NMS的工作原理…

大数据预处理与采集实验三:Urllib的GET和POST请求(1)

目录 Urllib基本操作-GET ➢没有进行utf-8编码的输出 ➢经过utf-8decode之后的输出 ➢ Timeout参数&#xff1a;捕获由于连接超时而引发的异常 ◆Urllib基本操作-定制请求头 ➢ 在GET请求中加入多个访问参数 ◆Urllib基本操作-POST ➢有道词典网页爬取&#xff1a;找到…

中文编程软件哪个好用,初学编程软件推荐

中文编程软件哪个好用&#xff0c;初学编程软件推荐 给大家分享一款中文编程工具&#xff0c;零基础轻松学编程&#xff0c;不需英语基础&#xff0c;编程工具可下载。 这款工具不但可以连接部分硬件&#xff0c;而且可以开发大型的软件&#xff0c;想如图这个实例就是用这个…

关于Kubernetes——cka认证含金量怎么样?

2019年和2020年&#xff0c;Rancher分别对近1,000名专业人员展开了调查。调查结果表明&#xff0c;Kubernetes在不同行业连续两年保持了90%以上的采用率&#xff0c;而生产环境中的容器采用率从2019年的85%增长至2020年的87%。 SUSE大中华区总裁秦小康表示&#xff1a;“从调研…

Seata入门系列【18】Seata集成Mybatis-Plus多数据源

1 前言 在使用单个服务&#xff0c;多数据源时&#xff0c;也存在分布式事务问题。 当单体系统需要访问多个数据库&#xff08;实例&#xff09;时就会产生分布式事务。 比如&#xff1a;用户信 息和订单信息分别在两个MySQL实例存储&#xff0c;用户管理系统删除用户信息&am…

Scala和Play WS库编写的爬虫程序

使用Scala和Play WS库编写的爬虫程序&#xff0c;该程序将爬取网页内容&#xff1a; import play.api.libs.ws._ import scala.concurrent.ExecutionContext.Implicits.global ​ object BaiduCrawler {def main(args: Array[String]): Unit {val url ""val proxy…

超详细的接口测试用例编写

自动化始终只是辅助测试工作的一个手段&#xff0c;对于测试人员而言&#xff0c;测试基础和测试用例的设计才是核心。如果测试用例的覆盖率或者质量不高&#xff0c;那将这部分用例实现为自动化用例的意义也就不大了。 那么&#xff0c;接口测试用例应该怎么编写呢&#xff1…

Powercli批量修改分布式交换机端口组

背景 需求&#xff1a; 批量修改虚拟机的分布式端口组 解决&#xff1a; 三条命令解决&#xff1a;先获取目标虚拟机、获取目标端口组、修改虚拟机端口组、检查虚拟机状态。 $vm Get-VM -Name <虚拟机名称> $portGroup Get-VirtualPortGroup -Name <端口组名称…

数据出境安全评估:重要性和实施策略

数据出境安全评估是确保数据安全和合规的重要环节。随着全球化的加速和信息技术的快速发展&#xff0c;企业和个人需要处理大量的数据&#xff0c;其中许多数据涉及个人隐私和企业机密。因此&#xff0c;数据出境安全评估对于保护数据安全和隐私权至关重要。 一、数据出境安全评…