【python海洋专题十】Cartopy画特定区域的地形等深线图

news2025/5/19 17:31:47

【python海洋专题十】Cartopy画特定区域的地形等深线图
海洋与大气科学

前几期可以认为关于平面的元素画法🆗了

本期关于特定区域平面画法

全球区域水深图

在这里插入图片描述
在这里插入图片描述

本期内容

画某元素特定区域的平面图:我有两个方法:

第一个:裁剪nc文件

第二个:掩盖其他区域,只显示特定区域的平面图。

1:裁剪nc文件

# scs's range is lon from 100 to 123;lat from 0 to 25;
print(np.where(lon >= 100))# 8400
print(np.where(lon >= 123))# 9090
print(np.where(lat >= 0))# 2700
print(np.where(lat >= 25))# 3450
lon1=lon[8400:9090]
lat1=lat[2700:3450]
ele1=ele[2700:3450,8400:9090]

目的找到范围的初始和终止位置。

图片

大区域证明数据的裁剪!

2画全球区域但只显示特定区域

ax.set_extent([100, 123, 0, 25], crs=ccrs.PlateCarree())# 设置显示范围

图片

参考文献及其在本文中的作用

1:Python学习笔记:numpy选择符合条件数据:select、where、choose、nonzero - Hider1214 - 博客园 (cnblogs.com)

全文代码

1全球区域水深图

# -*- coding: utf-8 -*-
# %%
# Importing related function packages
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as feature
import numpy as np
import matplotlib.ticker as ticker
from cartopy import mpl
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
from matplotlib.font_manager import FontProperties
from netCDF4 import Dataset
from palettable.cmocean.diverging import Delta_4
from palettable.colorbrewer.sequential import GnBu_9
from palettable.colorbrewer.sequential import Blues_9
from palettable.scientific.diverging import Roma_20
from pylab import *
def reverse_colourmap(cmap, name='my_cmap_r'):
    reverse = []
    k = []

    for key in cmap._segmentdata:
        k.append(key)
        channel = cmap._segmentdata[key]
        data = []

        for t in channel:
            data.append((1 - t[0], t[2], t[1]))
        reverse.append(sorted(data))

    LinearL = dict(zip(k, reverse))
    my_cmap_r = mpl.colors.LinearSegmentedColormap(name, LinearL)
    return my_cmap_r

cmap = Blues_9.mpl_colormap
cmap_r = reverse_colourmap(cmap)
cmap1 = GnBu_9.mpl_colormap
cmap_r1 = reverse_colourmap(cmap1)
cmap2 = Roma_20.mpl_colormap
cmap_r2 = reverse_colourmap(cmap2)
# read data
a = Dataset('D:\pycharm_work\data\etopo2.nc')
print(a)
lon = a.variables['lon'][:]
lat = a.variables['lat'][:]
ele = a.variables['topo'][:,:]
lon1=lon[1:10800:110]
lat1=lat[1:5400:110]
ele1=ele[1:5400:110,1:10800:110]
print(len(lon1))
print(len(lat))
# 图三
# 设置地图全局属性
scale = '50m'
plt.rcParams['font.sans-serif'] = ['Times New Roman']  # 设置整体的字体为Times New Roman
fig = plt.figure(dpi=300, figsize=(3, 2), facecolor='w', edgecolor='blue')#设置一个画板,将其返还给fig
ax = fig.add_axes([0.05, 0.08, 0.92, 0.8], projection=ccrs.PlateCarree(central_longitude=180))
ax.set_extent([0, 360, -90, 90], crs=ccrs.PlateCarree())# 设置显示范围
land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face',
                                    facecolor=feature.COLORS['land'])
ax.add_feature(land, facecolor='0.6')
ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3)#添加海岸线:关键字lw设置线宽;linestyle设置线型
cs = ax.contourf(lon1, lat1, ele1, levels=np.arange(-9000,0,20),extend='both',cmap=cmap_r1, transform=ccrs.PlateCarree())
# ------colorbar设置
cb = plt.colorbar(cs, ax=ax, extend='both', orientation='vertical',ticks=np.linspace(-9000, 0, 10))
cb.set_label('depth', fontsize=4, color='k')#设置colorbar的标签字体及其大小
cb.ax.tick_params(labelsize=4, direction='in') #设置colorbar刻度字体大小。
cf = ax.contour(lon, lat, ele[:, :], levels=np.linspace(-9000, 0, 5),colors='gray', linestyles='-',
                    linewidths=0.2,transform=ccrs.PlateCarree())
# 添加标题
ax.set_title('Etopo', fontsize=4)
# 利用Formatter格式化刻度标签
ax.set_xticks(np.arange(0, 360, 30), crs=ccrs.PlateCarree())#添加经纬度
ax.set_xticklabels(np.arange(0, 360, 30), fontsize=4)
ax.set_yticks(np.arange(-90, 90, 20), crs=ccrs.PlateCarree())
ax.set_yticklabels(np.arange(-90, 90, 20), fontsize=4)
ax.xaxis.set_major_formatter(LongitudeFormatter())
ax.yaxis.set_major_formatter(LatitudeFormatter())
ax.tick_params(color='k', direction='in')#更改刻度指向为朝内,颜色设置为蓝色
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(-180, 180, 30), ylocs=np.arange(-90, 90, 20),
        linewidth=0.25, linestyle='--', color='k', alpha=0.8)#添加网格线
gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
plt.savefig('scs_elevation03.jpg', dpi=600, bbox_inches='tight', pad_inches=0.1)  # 输出地图,并设置边框空白紧密
plt.show()

2:裁剪nc文件;

# -*- coding: utf-8 -*-
# %%
# Importing related function packages
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as feature
import numpy as np
import matplotlib.ticker as ticker
from cartopy import mpl
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
from matplotlib.font_manager import FontProperties
from netCDF4 import Dataset
from palettable.cmocean.diverging import Delta_4
from palettable.colorbrewer.sequential import GnBu_9
from palettable.colorbrewer.sequential import Blues_9
from palettable.scientific.diverging import Roma_20
from pylab import *
def reverse_colourmap(cmap, name='my_cmap_r'):
    reverse = []
    k = []

    for key in cmap._segmentdata:
        k.append(key)
        channel = cmap._segmentdata[key]
        data = []

        for t in channel:
            data.append((1 - t[0], t[2], t[1]))
        reverse.append(sorted(data))

    LinearL = dict(zip(k, reverse))
    my_cmap_r = mpl.colors.LinearSegmentedColormap(name, LinearL)
    return my_cmap_r

cmap = Blues_9.mpl_colormap
cmap_r = reverse_colourmap(cmap)
cmap1 = GnBu_9.mpl_colormap
cmap_r1 = reverse_colourmap(cmap1)
cmap2 = Roma_20.mpl_colormap
cmap_r2 = reverse_colourmap(cmap2)
# read data
a = Dataset('D:\pycharm_work\data\etopo2.nc')
print(a)
lon = a.variables['lon'][:]
lat = a.variables['lat'][:]
ele = a.variables['topo'][:]
print(lon)
print(lat)
# scs's range is lon from 100 to 123;lat from 0 to 25;
# so
print(np.where(lon >= 100))# 8400
print(np.where(lon >= 123))# 9090
print(np.where(lat >= 0))# 2700
print(np.where(lat >= 25))# 3450
lon1=lon[8400:9090]
lat1=lat[2700:3450]
ele1=ele[2700:3450,8400:9090]
# 图三
# 设置地图全局属性
scale = '50m'
plt.rcParams['font.sans-serif'] = ['Times New Roman']  # 设置整体的字体为Times New Roman
fig = plt.figure(dpi=300, figsize=(3, 2), facecolor='w', edgecolor='blue')#设置一个画板,将其返还给fig
ax = fig.add_axes([0.05, 0.08, 0.92, 0.8], projection=ccrs.PlateCarree(central_longitude=180))
ax.set_extent([100, 123, 0, 25], crs=ccrs.PlateCarree())# 设置显示范围
land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face',
                                    facecolor=feature.COLORS['land'])
ax.add_feature(land, facecolor='0.6')
ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3)#添加海岸线:关键字lw设置线宽;linestyle设置线型
cs = ax.contourf(lon1, lat1, ele1, levels=np.arange(-9000,0,20),extend='both',cmap=cmap_r1, transform=ccrs.PlateCarree())
# ------colorbar设置
cb = plt.colorbar(cs, ax=ax, extend='both', orientation='vertical',ticks=np.linspace(-9000, 0, 10))
cb.set_label('depth', fontsize=4, color='k')#设置colorbar的标签字体及其大小
cb.ax.tick_params(labelsize=4, direction='in') #设置colorbar刻度字体大小。
cf = ax.contour(lon, lat, ele[:, :], levels=[-5000,-2000,-500,-300,-100,-50,-10],colors='gray', linestyles='-',
                    linewidths=0.2,transform=ccrs.PlateCarree())
# 添加标题
ax.set_title('Etopo', fontsize=4)
# 利用Formatter格式化刻度标签
ax.set_xticks(np.arange(100, 123, 4), crs=ccrs.PlateCarree())#添加经纬度
ax.set_xticklabels(np.arange(100, 123, 4), fontsize=4)
ax.set_yticks(np.arange(0, 25, 2), crs=ccrs.PlateCarree())
ax.set_yticklabels(np.arange(0, 25, 2), fontsize=4)
ax.xaxis.set_major_formatter(LongitudeFormatter())
ax.yaxis.set_major_formatter(LatitudeFormatter())
ax.tick_params(color='k', direction='in')#更改刻度指向为朝内,颜色设置为蓝色
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 123, 4), ylocs=np.arange(0, 25, 2),
        linewidth=0.25, linestyle='--', color='k', alpha=0.8)#添加网格线
gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
plt.savefig('scs_elevation1.jpg', dpi=600, bbox_inches='tight', pad_inches=0.1)  # 输出地图,并设置边框空白紧密
plt.show()

3:掩盖其他区域,只显示特定区域的平面图。

# -*- coding: utf-8 -*-
# %%
# Importing related function packages
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as feature
import numpy as np
import matplotlib.ticker as ticker
from cartopy import mpl
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
from matplotlib.font_manager import FontProperties
from netCDF4 import Dataset
from palettable.cmocean.diverging import Delta_4
from palettable.colorbrewer.sequential import GnBu_9
from palettable.colorbrewer.sequential import Blues_9
from palettable.scientific.diverging import Roma_20
from pylab import *
def reverse_colourmap(cmap, name='my_cmap_r'):
    reverse = []
    k = []

    for key in cmap._segmentdata:
        k.append(key)
        channel = cmap._segmentdata[key]
        data = []

        for t in channel:
            data.append((1 - t[0], t[2], t[1]))
        reverse.append(sorted(data))

    LinearL = dict(zip(k, reverse))
    my_cmap_r = mpl.colors.LinearSegmentedColormap(name, LinearL)
    return my_cmap_r

cmap = Blues_9.mpl_colormap
cmap_r = reverse_colourmap(cmap)
cmap1 = GnBu_9.mpl_colormap
cmap_r1 = reverse_colourmap(cmap1)
cmap2 = Roma_20.mpl_colormap
cmap_r2 = reverse_colourmap(cmap2)
# read data
a = Dataset('D:\pycharm_work\data\etopo2.nc')
print(a)
lon = a.variables['lon'][:]
lat = a.variables['lat'][:]
ele = a.variables['topo'][:,:]
lon1=lon[1:10800:110]
lat1=lat[1:5400:110]
ele1=ele[1:5400:110,1:10800:110]
print(len(lon1))
print(len(lat))
# 图三
# 设置地图全局属性
scale = '50m'
plt.rcParams['font.sans-serif'] = ['Times New Roman']  # 设置整体的字体为Times New Roman
fig = plt.figure(dpi=300, figsize=(3, 2), facecolor='w', edgecolor='blue')#设置一个画板,将其返还给fig
ax = fig.add_axes([0.05, 0.08, 0.92, 0.8], projection=ccrs.PlateCarree(central_longitude=180))
ax.set_extent([100, 123, 0, 25], crs=ccrs.PlateCarree())# 设置显示范围
land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face',
                                    facecolor=feature.COLORS['land'])
ax.add_feature(land, facecolor='0.6')
ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3)#添加海岸线:关键字lw设置线宽;linestyle设置线型
cs = ax.contourf(lon1, lat1, ele1, levels=np.arange(-9000,0,20),extend='both',cmap=cmap_r1, transform=ccrs.PlateCarree())
# ------colorbar设置
cb = plt.colorbar(cs, ax=ax, extend='both', orientation='vertical',ticks=np.linspace(-9000, 0, 10))
cb.set_label('depth', fontsize=4, color='k')#设置colorbar的标签字体及其大小
cb.ax.tick_params(labelsize=4, direction='in') #设置colorbar刻度字体大小。
cf = ax.contour(lon, lat, ele[:, :], levels=np.linspace(-9000, 0, 5),colors='gray', linestyles='-',
                    linewidths=0.2,transform=ccrs.PlateCarree())
# 添加标题
ax.set_title('Etopo', fontsize=4)
# 利用Formatter格式化刻度标签
ax.set_xticks(np.arange(100, 123, 5), crs=ccrs.PlateCarree())#添加经纬度
ax.set_xticklabels(np.arange(100, 123, 5), fontsize=4)
ax.set_yticks(np.arange(0, 25, 5), crs=ccrs.PlateCarree())
ax.set_yticklabels(np.arange(0, 25, 5), fontsize=4)
ax.xaxis.set_major_formatter(LongitudeFormatter())
ax.yaxis.set_major_formatter(LatitudeFormatter())
ax.tick_params(color='k', direction='in')#更改刻度指向为朝内,颜色设置为蓝色
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 123, 5), ylocs=np.arange(0, 25, 5),
        linewidth=0.25, linestyle='--', color='k', alpha=0.8)#添加网格线
gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
plt.savefig('scs_elevation03.jpg', dpi=600, bbox_inches='tight', pad_inches=0.1)  # 输出地图,并设置边框空白紧密
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1059470.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

嵌入式学习笔记(45) NandFlash的接口

9.1.1 Nand的型号与命名 (1)K9F2G08:K9F表示是三星公司的NandFlash系列。2G表示Nand的大小是2Gbit(256MB)。08表示Nand是8位的(数据线有8根)。 (2)Nand命名中可以看出,厂家、系列型号、容量大小、数据位数 9.1.2 Nand的数据位 …

机器视觉工程师,努力方向错了,白费

努力方向错了,白费。 在这个知识经济,知识付费,知识大V横行的时代,知识似乎遍地都是。但你有没有想过,微博里的段子是不是知识?微信里的爆款文章是不是知识?得到App里的音频是不是知识&#xf…

OpenGLES:绘制一个混色旋转的3D球体

一.概述 前面几篇博文讲解了如何使用OpenGLES实现不同的3D图形 本篇博文讲解怎样实现3D世界的代表图形:一个混色旋转的3D球体 二.球体解析 2.1 极限正多面体 如果有学习过我前几篇3D图形绘制的博文,就知道要想绘制一个3D图形,首先要做的…

基于Java的校园二手书交易平台设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序(小蔡coding)有保障的售后福利 代码参考源码获取 前言 💗博主介绍:✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作…

挑战自己,编程你的五子棋:Python+Pygame实践经验分享

引言 五子棋,古老而经典,是一种两人对抗的策略棋类游戏。想要体验制作游戏的乐趣吗?本文将详细指导你如何使用Python语言和Pygame库,一步步打造自己的五子棋游戏! 1. 开始之前:重要准备 首先&#xff0…

使用DNS查询Web服务器IP地址

浏览器并不具备访问网络的功能,其最终是通过操作系统实现的,委托操作系统访问服务器时提供的并不是浏览器里面输入的域名而是ip地址,因此第一步需要将域名转换为对应的ip地址 域名:www.baidu.com ip地址是一串数字 tcp/ip的网络结…

项目进展(六)-继续学习32位ADC芯片ADS1285

一、数据手册学习 1.1时序图 SPI时序图,这是很重要的一个地方,一定要在代码中将SPI配置成对应的模式。 先放一堆截图在这吧,一些引脚的功能及特性还未看到,等具体了解之后再详细介绍下面几张截图的时序: 1.2 内…

大模型RLHF算法更新换代,DeepMind提出自训练离线强化学习框架ReST

文章链接: https://arxiv.org/abs/2308.08998 大模型(LLMs)爆火的背后,离不开多种不同基础算法技术的支撑,例如基础语言架构Transformer、自回归语言建模、提示学习和指示学习等等。这些技术造就了像GPT-3、PaLM等基座…

问答雕虫1

问题: 现在有如下表 假设按时间顺序,记录中连续出现0.2 0.3 0.5 0.7四条记录记为一次有效数据组,统计一段时间范围内,有效数据组出现的次数,最终计算有效数据组在整个时间范围内的记录的占比。用mysql语句或者函数如何…

uniapp uni.showToast 一闪而过的问题

问题:在页面跳转uni.navigateBack()等操作的前或后,执行uni.showToast,即使代码中设置2000ms的显示时间,也会一闪而过。 解决:用setTimeout延后navigateBack的执行。

css自学框架之选项卡

这一节我们学习切换选项卡,两种切换方式,一种是单击切换选项,一种是鼠标滑动切换,通过参数来控制,切换方法。 一、参数 属性默认值描述tabBar.myth-tab-header span鼠标触发区域tabCon.myth-tab-content主体区域cla…

C语言动态内存管理

🐵本篇文章将会对动态内存管理相关知识进行讲解 1. 为什么要存在动态内存管理❓ 目前我们掌握了两种开辟内存的方式,分别为: int a 10;//存放一个值 int arr[] { 1,2,3,4,5,6,7,8,9,10 };//存放一组数 这两种内存开辟方式都是静态的&#…

2023年山东省安全员C证证考试题库及山东省安全员C证试题解析

题库来源:安全生产模拟考试一点通公众号小程序 2023年山东省安全员C证证考试题库及山东省安全员C证试题解析是安全生产模拟考试一点通结合(安监局)特种作业人员操作证考试大纲和(质检局)特种设备作业人员上岗证考试大…

人脸识别:FaceSDK 8.1 Crack

FaceSDK 使 Microsoft Visual C、C#、Objective C、Swift、Java、VB、Delphi 和 Python 开发人员能够为 Web、Windows、Linux、macOS、iOS 和 Android 构建具有人脸识别和基于人脸的 32 位和 64 位应用程序生物特征识别功能 FaceSDK 用于数百个应用程序,用于通过网络…

极大似然估计概念的理解——统计学习方法

目录 1.最大似然估计的概念的理解1 2.最大似然估计的概念的理解2 3.最大似然估计的概念的理解3 4.例子 1.最大似然估计的概念的理解1 最大似然估计是一种概率论在统计学上的概念,是参数估计的一种方法。给定观测数据来评估模型参数。也就是模型已知,参…

Flutter项目安装到Android手机一直显示在assembledebug

问题 Flutter项目安装到Android手机一直显示在assembledebug 原因 网络不好,gradle依赖下载不下来 解决方案 修改如下的文件 gradle-wrapper.properties 使用腾讯提供的gradle镜像下载 distributionUrlhttps://mirrors.cloud.tencent.com/gradle/gradle-7.5…

SpringBoot-Shiro安全权限框架

Apache Shiro是一个强大而灵活的开源安全框架,它干净利落地处理身份认证,授权,企业会话管理和加密。 官网: http://shiro.apache.org/ 源码: https://github.com/apache/shiro Subject:代表当前用户或…

【问题证明】矩阵方程化为特征值方程求得的特征值为什么是全部特征值?不会丢解吗?

问题 这个问题困扰了我好久,一直感觉如果有其他的特征值没法证伪,不过一直存在思想的层面,没有实际解决,今天突然想到动笔来解决,遂得解,证明如下。 证明 总结 这个证明看似证明过后很直观,但…

10.4 小任务

目录 QT实现TCP服务器客户端搭建的代码&#xff0c;现象 TCP服务器 .h文件 .cpp文件 现象 TCP客户端 .h文件 .cpp文件 现象 QT实现TCP服务器客户端搭建的代码&#xff0c;现象 TCP服务器 .h文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #includ…

智能合约漏洞,BEVO 代币损失 4.5 万美元攻击事件分析

智能合约漏洞&#xff0c;BEVO 代币损失 4.5 万美元攻击事件分析 一、事件背景 北京时间 2023 年 1 月 31 日&#xff0c;在 twitter 上看到这样一条消息&#xff1a; BEVO 代币被攻击&#xff0c;总共损失 45000 美元&#xff0c;导致 BEVO 代币的价格下跌了 99%。 有趣的是…