就离谱!使用机器学习预测2022世界杯:小组赛挺准,但冠亚季军都错了 ⛵

news2025/6/22 1:58:32

💡 作者:韩信子@ShowMeAI
📘 数据分析实战系列:https://www.showmeai.tech/tutorials/40
📘 机器学习实战系列:https://www.showmeai.tech/tutorials/41
📘 本文地址:https://www.showmeai.tech/article-detail/400
📢 声明:版权所有,转载请联系平台与作者并注明出处
📢 收藏ShowMeAI查看更多精彩内容

💡 赛后作者补充

FIFA 2022世界杯已经落幕!关于哪支球队将赢得冠军的讨论,也有了明确答案。恭喜梅西!恭喜阿根廷!赛前 ShowMeAI 使用数据科学和机器学习的技能,开发一个基于历史数据的模型来预测 FIFA 2022 世界杯比赛结果。现在尘埃落定,让我们一起看看机器学习的预测与实际比赛结果,有多大大大大的差距吧!

对比下方官网发布的赛程结果汇总, ShowMeAI 将机器学习的预测结果可视化后与之进行了比较。

可以看到,从小组赛开始直到1/4决赛,机器学习模型预测的正确率都是比较高的。然而从半决赛开始,模型预测准确度急转直下,不论是参赛球队还是输赢判断都降为0,冠亚季军无一预测正确

但这也正是足球的魅力所在。正是竞技体育中存在的不确定性,让我们更深刻地感受到了奋斗、勇气、英雄和梦想的含义。(下文是赛前完整的建模过程,一起来看看吧!)

💡 数据源

我们先为机器学习建模准备数据,我们需要一些数据来体现各支球队的表现。我们本次用到的是FIFA 相关的数据:🏆1872到2022历史比赛数据 和 🏆FIFA 排名数据,数据可以直接在Kaggle平台获取,也可以在ShowMeAI的百度网盘获取。

🏆 实战数据集下载(百度网盘):公众号『ShowMeAI研究中心』回复『实战』,或者点击 这里 获取本文 [35]基于机器学习的2022世界杯预测实战 『FIFA 2022数据集

ShowMeAI官方GitHub:https://github.com/ShowMeAI-Hub

💡 数据集构建

哪些特征会影响足球比赛的胜负结果?这个开放的问题涉及很多特征维度:从选定的球员到当天球场的温度。我们简单一点处理,仅使用参与比赛的每个团队的过去统计数据构建一个数据集,优先考虑可以通过简单方式收集的可量化统计数据,例如进球数、平均排名、赢得的分数等。这些数据可以在我们上面谈到的两个数据集中整合得到。

另外,我们仅分析 2018 之后的数据,这样我们可以更聚焦在本届世界杯备战这几年球队队员表现的变化。数据构建代码如下:

import pandas as pd
import re
df =  pd.read_csv("results.csv") #games between national teams
df["date"] = pd.to_datetime(df["date"])
df = df[(df["date"] >= "2018-8-1")].reset_index(drop=True) #games at the 2022 wc cycle
df_wc = df #pre-wc outcomes

rank = pd.read_csv("fifa_ranking-2022-10-06.csv") #rankings
rank["rank_date"] = pd.to_datetime(rank["rank_date"]) 
rank = rank[(rank["rank_date"] >= "2018-8-1")].reset_index(drop=True) #selecting games from the 2022 wc cycle
rank["country_full"] = rank["country_full"].str.replace("IR Iran", "Iran").str.replace("Korea Republic", "South Korea").str.replace("USA", "United States") #ajustando nomes de algumas seleções
rank = rank.set_index(['rank_date']).groupby(['country_full'], group_keys=False).resample('D').first().fillna(method='ffill').reset_index()
rank_wc = rank #dataframe with rankings

#Making the merge
df_wc_ranked = df_wc.merge(rank[["country_full", "total_points", "previous_points", "rank", "rank_change", "rank_date"]], left_on=["date", "home_team"], right_on=["rank_date", "country_full"]).drop(["rank_date", "country_full"], axis=1)
df_wc_ranked = df_wc_ranked.merge(rank[["country_full", "total_points", "previous_points", "rank", "rank_change", "rank_date"]], left_on=["date", "away_team"], right_on=["rank_date", "country_full"], suffixes=("_home", "_away")).drop(["rank_date", "country_full"], axis=1)

最终的数据集结果如下:

💡 特征工程

对特征工程细节感兴趣的同学,可以阅读ShowMeAI的详解文章,学习理论知识与实战方法:

📘 机器学习实战 | 机器学习特征工程最全解读

准备好数据之后,我们就可以进行特征工程了,我们希望从原始数据中构建有预测能力的特征信息,我们这里采用了如下特征:

  • 世界杯周期和最近 5 场比赛的平均进球数。
  • 世界杯周期和最近 5 场比赛的平均失球数。
  • 每支球队之间的 FIFA 排名差异。
  • 国际足联排名每支球队在世界杯周期比赛和最近 5 场比赛中平均面对。
  • 从第一场比赛到现在,FIFA 排名的积分变化。
  • FIFA 排名 5 场比赛前和现在的积分变化。
  • 世界杯周期和最近 5 场比赛的平均局分。
  • 根据世界杯周期和最近 5 场比赛中的排名位置加权平均赢得的比赛积分。
  • 表征比赛公正友好的类别变量字段值。

我们选取以上特征的原因是:

  • 前两个特征用于量化一支球队的进攻力和防守力;
  • 国际足联在比赛中排名位置的差异是用来量化国际足联计算的两队实力的差异;
  • 平均排名用于分析球队面对的对手的实力;
  • 国际足联排名积分的变化是为了分析世界杯周期和最近5场比赛中球队能力的变化;
  • 球队的场均胜率量化球队的表现,而球队的场均胜负加权平均是根据球队所面对的对手的排名位次进行加权,以更精准分析球队的表现。
df = df_wc_ranked

def result_finder(home, away):
    if home > away:
        return pd.Series([0, 3, 0])
    if home < away:
        return pd.Series([1, 0, 3])
    else:
        return pd.Series([2, 1, 1])

results = df.apply(lambda x: result_finder(x["home_score"], x["away_score"]), axis=1)

df[["result", "home_team_points", "away_team_points"]] = results

df["rank_dif"] = df["rank_home"] - df["rank_away"]
df["sg"] = df["home_score"] - df["away_score"]
df["points_home_by_rank"] = df["home_team_points"]/df["rank_away"]
df["points_away_by_rank"] = df["away_team_points"]/df["rank_home"]

home_team = df[["date", "home_team", "home_score", "away_score", "rank_home", "rank_away","rank_change_home", "total_points_home", "result", "rank_dif", "points_home_by_rank", "home_team_points"]]

away_team = df[["date", "away_team", "away_score", "home_score", "rank_away", "rank_home","rank_change_away", "total_points_away", "result", "rank_dif", "points_away_by_rank", "away_team_points"]]

home_team.columns = [h.replace("home_", "").replace("_home", "").replace("away_", "suf_").replace("_away", "_suf") for h in home_team.columns]

away_team.columns = [a.replace("away_", "").replace("_away", "").replace("home_", "suf_").replace("_home", "_suf") for a in away_team.columns]

team_stats = home_team.append(away_team)

team_stats_raw = team_stats.copy()
stats_val = []

for index, row in team_stats.iterrows():
    team = row["team"]
    date = row["date"]
    past_games = team_stats.loc[(team_stats["team"] == team) & (team_stats["date"] < date)].sort_values(by=['date'], ascending=False)
    last5 = past_games.head(5)
    
    goals = past_games["score"].mean()
    goals_l5 = last5["score"].mean()
    
    goals_suf = past_games["suf_score"].mean()
    goals_suf_l5 = last5["suf_score"].mean()
    
    rank = past_games["rank_suf"].mean()
    rank_l5 = last5["rank_suf"].mean()
    
    if len(last5) > 0:
        points = past_games["total_points"].values[0] - past_games["total_points"].values[-1]#qtd de pontos ganhos
        points_l5 = last5["total_points"].values[0] - last5["total_points"].values[-1] 
    else:
        points = 0
        points_l5 = 0
        
    gp = past_games["team_points"].mean()
    gp_l5 = last5["team_points"].mean()
    
    gp_rank = past_games["points_by_rank"].mean()
    gp_rank_l5 = last5["points_by_rank"].mean()
    
    stats_val.append([goals, goals_l5, goals_suf, goals_suf_l5, rank, rank_l5, points, points_l5, gp, gp_l5, gp_rank, gp_rank_l5])

stats_cols = ["goals_mean", "goals_mean_l5", "goals_suf_mean", "goals_suf_mean_l5", "rank_mean", "rank_mean_l5", "points_mean", "points_mean_l5", "game_points_mean", "game_points_mean_l5", "game_points_rank_mean", "game_points_rank_mean_l5"]

stats_df = pd.DataFrame(stats_val, columns=stats_cols)

full_df = pd.concat([team_stats.reset_index(drop=True), stats_df], axis=1, ignore_index=False)

home_team_stats = full_df.iloc[:int(full_df.shape[0]/2),:]
away_team_stats = full_df.iloc[int(full_df.shape[0]/2):,:]

home_team_stats = home_team_stats[home_team_stats.columns[-12:]]
away_team_stats = away_team_stats[away_team_stats.columns[-12:]]

home_team_stats.columns = ['home_'+str(col) for col in home_team_stats.columns]
away_team_stats.columns = ['away_'+str(col) for col in away_team_stats.columns]

match_stats = pd.concat([home_team_stats, away_team_stats.reset_index(drop=True)], axis=1, ignore_index=False)

full_df = pd.concat([df, match_stats.reset_index(drop=True)], axis=1, ignore_index=False)

def find_friendly(x):
    if x == "Friendly":
        return 1
    else: return 0

full_df["is_friendly"] = full_df["tournament"].apply(lambda x: find_friendly(x)) 

full_df = pd.get_dummies(full_df, columns=["is_friendly"])

base_df = full_df[["date", "home_team", "away_team", "rank_home", "rank_away","home_score", "away_score","result", "rank_dif", "rank_change_home", "rank_change_away", 'home_goals_mean',
       'home_goals_mean_l5', 'home_goals_suf_mean', 'home_goals_suf_mean_l5',
       'home_rank_mean', 'home_rank_mean_l5', 'home_points_mean',
       'home_points_mean_l5', 'away_goals_mean', 'away_goals_mean_l5',
       'away_goals_suf_mean', 'away_goals_suf_mean_l5', 'away_rank_mean',
       'away_rank_mean_l5', 'away_points_mean', 'away_points_mean_l5','home_game_points_mean', 'home_game_points_mean_l5',
       'home_game_points_rank_mean', 'home_game_points_rank_mean_l5','away_game_points_mean',
       'away_game_points_mean_l5', 'away_game_points_rank_mean',
       'away_game_points_rank_mean_l5',
       'is_friendly_0', 'is_friendly_1']]

base_df.tail()

💡 数据分析

在建模之前,我们对于数据做一点分析。比赛的结果有3种情况:赢、平、输,但作为 3 类分类问题进行建模,类别不均衡是一个很大的问题,且评估也会有点麻烦,我们做一点合并和调整:汇总到「主队赢」和「主队平/输」2种情况。

关于数据分析与可视化的详细教程,可以阅读ShowMeAI关于的数据分析系列教程与文章

  • 📘 图解数据分析:从入门到精通系列教程

  • 📘 Python数据分析 | 基于Pandas的数据可视化

  • 📘 Python数据分析 | Seaborn工具与数据可视化

我们按照不同的结果(赢/输平)来对不同的特征维度进行分布分析,我们这里使用小提琴图。

base_df_no_fg = base_df.dropna()

df = base_df_no_fg

def no_draw(x):
    if x == 2:
        return 1
    else:
        return x
    
df["target"] = df["result"].apply(lambda x: no_draw(x))
import matplotlib.pyplot as plt

data1 = df[list(df.columns[8:20].values) + ["target"]]

scaled = (data1[:-1] - data1[:-1].mean()) / data1[:-1].std()
scaled["target"] = data1["target"]
violin1 = pd.melt(scaled,id_vars="target", var_name="features", value_name="value")

plt.figure(figsize=(15,10))
sns.violinplot(x="features", y="value", hue="target", data=violin1,split=True, inner="quart")
plt.xticks(rotation=90)
plt.show()
data2 = df[df.columns[20:]]

scaled = (data2[:-1] - data2[:-1].mean()) / data2[:-1].std()
scaled["target"] = data2["target"]
violin2 = pd.melt(scaled,id_vars="target", var_name="features", value_name="value")

plt.figure(figsize=(15,10))
sns.violinplot(x="features", y="value", hue="target", data=violin2,split=True, inner="quart")
plt.xticks(rotation=90)
plt.show()

对于第一组数据,目前的特征中只有rank_dif(两队排名的差值)对 target classes 有影响。因此,我们考虑创建更多差异特征,这类特征似乎是很强的特征信息,构建如下特征:

  • 进球差异。
  • 失球差异。
  • 球队进球与对手进球之间的差异。
dif = df.copy()
dif.loc[:, "goals_dif"] = dif["home_goals_mean"] - dif["away_goals_mean"]
dif.loc[:, "goals_dif_l5"] = dif["home_goals_mean_l5"] - dif["away_goals_mean_l5"]
dif.loc[:, "goals_suf_dif"] = dif["home_goals_suf_mean"] - dif["away_goals_suf_mean"]
dif.loc[:, "goals_suf_dif_l5"] = dif["home_goals_suf_mean_l5"] - dif["away_goals_suf_mean_l5"]
dif.loc[:, "goals_made_suf_dif"] = dif["home_goals_mean"] - dif["away_goals_suf_mean"]
dif.loc[:, "goals_made_suf_dif_l5"] = dif["home_goals_mean_l5"] - dif["away_goals_suf_mean_l5"]
dif.loc[:, "goals_suf_made_dif"] = dif["home_goals_suf_mean"] - dif["away_goals_mean"]
dif.loc[:, "goals_suf_made_dif_l5"] = dif["home_goals_suf_mean_l5"] - dif["away_goals_mean_l5"]

我们再次使用小提琴图分析。

data_difs = dif.iloc[:, -8:]
scaled = (data_difs - data_difs.mean()) / data_difs.std()
scaled["target"] = data2["target"]
violin = pd.melt(scaled,id_vars="target", var_name="features", value_name="value")

plt.figure(figsize=(10,10))
sns.violinplot(x="features", y="value", hue="target", data=violin,split=True, inner="quart")
plt.xticks(rotation=90)
plt.show()

进球差异和失球差异特征对目标有很好的区分度。然而,球队进球与对手进球之间差异的特征没有影响。那我们再考虑:

  • 排名差异。
  • 世界杯周期和最近 5 场比赛的进球差异。
  • 在世界杯周期和最近 5 场比赛中出现净胜球。

此外,我们还可以计算积分的差异、排名位置的差异以及排名所获得的积分差异。而且,为了衡量对手的水平,我们可以考虑:排名所造成的进球与失球之间的差异。

dif.loc[:, "dif_points"] = dif["home_game_points_mean"] - dif["away_game_points_mean"]
dif.loc[:, "dif_points_l5"] = dif["home_game_points_mean_l5"] - dif["away_game_points_mean_l5"]
dif.loc[:, "dif_points_rank"] = dif["home_game_points_rank_mean"] - dif["away_game_points_rank_mean"]
dif.loc[:, "dif_points_rank_l5"] = dif["home_game_points_rank_mean_l5"] - dif["away_game_points_rank_mean_l5"]

dif.loc[:, "dif_rank_agst"] = dif["home_rank_mean"] - dif["away_rank_mean"]
dif.loc[:, "dif_rank_agst_l5"] = dif["home_rank_mean_l5"] - dif["away_rank_mean_l5"]

dif.loc[:, "goals_per_ranking_dif"] = (dif["home_goals_mean"] / dif["home_rank_mean"]) - (dif["away_goals_mean"] / dif["away_rank_mean"])
dif.loc[:, "goals_per_ranking_suf_dif"] = (dif["home_goals_suf_mean"] / dif["home_rank_mean"]) - (dif["away_goals_suf_mean"] / dif["away_rank_mean"])
dif.loc[:, "goals_per_ranking_dif_l5"] = (dif["home_goals_mean_l5"] / dif["home_rank_mean"]) - (dif["away_goals_mean_l5"] / dif["away_rank_mean"])
dif.loc[:, "goals_per_ranking_suf_dif_l5"] = (dif["home_goals_suf_mean_l5"] / dif["home_rank_mean"]) - (dif["away_goals_suf_mean_l5"] / dif["away_rank_mean"])

我们用提琴图和箱线图对数据进行分析:

data_difs = dif.iloc[:, -10:]
scaled = (data_difs - data_difs.mean()) / data_difs.std()
scaled["target"] = data2["target"]
violin = pd.melt(scaled,id_vars="target", var_name="features", value_name="value")

plt.figure(figsize=(15,10))
sns.violinplot(x="features", y="value", hue="target", data=violin,split=True, inner="quart")
plt.xticks(rotation=90)
plt.show()
plt.figure(figsize=(15,10))
sns.boxplot(x="features", y="value", hue="target", data=violin)
plt.xticks(rotation=90)
plt.show()

积分差异、排名的进球差异、排名的积分差异是很好的特征。但是,我们有一些特征之间的相关度非常高,我们通过jointplot进行联合分布分析:

sns.jointplot(data = data_difs, x = 'dif_rank_agst', y = 'dif_rank_agst_l5', kind="reg")
plt.show()
sns.jointplot(data = data_difs, x = 'goals_per_ranking_dif', y = 'goals_per_ranking_dif_l5', kind="reg")
plt.show()
sns.jointplot(data = data_difs, x = 'dif_points_rank', y = 'dif_points_rank_l5', kind="reg")
plt.show()
sns.jointplot(data = data_difs, x = 'dif_points', y = 'dif_points_l5', kind="reg")
plt.show()

分析相关性可以看出,我们选择其中的1组特征就好,这里我们选择了考虑全周期的版本。最后保留的特征有下面这些:

  • 球队排名差异(rank_dif
  • 世界杯周期和过去 5 场比赛平均进球数之间的差异(goals_dif / goals_dif_l5
  • 世界杯周期和过去 5 场比赛平均失球数之间的差异(goals_suf_dif / goals_suf_dif_l5
  • 世界杯周期和最近 5 场比赛的平均排名差异(dif_rank_agst / dif_rank_agst_l5
  • 世界杯周期平均排名加权进球数之间的差异(goals_per_ranking_dif
  • 世界杯周期和过去 5 场比赛中排名平均得分之间的差异(dif_points_rank / dif_points_rank_l5
  • 表示球赛是否公平友好的类别变量(is_friendly

这样,我们最终的数据集如下,包含后续机器学习模型所需的全部特征。

def create_db(df):
    columns = ["home_team", "away_team", "target", "rank_dif", "home_goals_mean", "home_rank_mean", "away_goals_mean", "away_rank_mean", "home_rank_mean_l5", "away_rank_mean_l5", "home_goals_suf_mean", "away_goals_suf_mean", "home_goals_mean_l5", "away_goals_mean_l5", "home_goals_suf_mean_l5", "away_goals_suf_mean_l5", "home_game_points_rank_mean", "home_game_points_rank_mean_l5", "away_game_points_rank_mean", "away_game_points_rank_mean_l5","is_friendly_0", "is_friendly_1"]
    
    base = df.loc[:, columns]
    base.loc[:, "goals_dif"] = base["home_goals_mean"] - base["away_goals_mean"]
    base.loc[:, "goals_dif_l5"] = base["home_goals_mean_l5"] - base["away_goals_mean_l5"]
    base.loc[:, "goals_suf_dif"] = base["home_goals_suf_mean"] - base["away_goals_suf_mean"]
    base.loc[:, "goals_suf_dif_l5"] = base["home_goals_suf_mean_l5"] - base["away_goals_suf_mean_l5"]
    base.loc[:, "goals_per_ranking_dif"] = (base["home_goals_mean"] / base["home_rank_mean"]) - (base["away_goals_mean"] / base["away_rank_mean"])
    base.loc[:, "dif_rank_agst"] = base["home_rank_mean"] - base["away_rank_mean"]
    base.loc[:, "dif_rank_agst_l5"] = base["home_rank_mean_l5"] - base["away_rank_mean_l5"]
    base.loc[:, "dif_points_rank"] = base["home_game_points_rank_mean"] - base["away_game_points_rank_mean"]
    base.loc[:, "dif_points_rank_l5"] = base["home_game_points_rank_mean_l5"] - base["away_game_points_rank_mean_l5"]
    
    model_df = base[["home_team", "away_team", "target", "rank_dif", "goals_dif", "goals_dif_l5", "goals_suf_dif", "goals_suf_dif_l5", "goals_per_ranking_dif", "dif_rank_agst", "dif_rank_agst_l5", "dif_points_rank", "dif_points_rank_l5", "is_friendly_0", "is_friendly_1"]]
    return model_df
 
model_db = create_db(df)
model_db

💡 建模优化

关于机器学习建模与调优的相关知识与实战方法,可以查看ShowMeAI的系列教程与文章

📘 机器学习****实战:手把手教你玩转机器学习系列

📘 AI****垂直领域工具库速查表 | Scikit-Learn 速查表

下面我们就可以开始建模了,我们使用两个模型 Random Forest 和 Gradient Boosting 来建模,进行效果对比。对于模型调参,我们使用 SkLearn 的 📘GridSearchCV 进行参数优化,挑选最佳模型。

import numpy as np
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.model_selection import train_test_split, GridSearchCV

#separating the target from the features
X = model_db.iloc[:, 3:]
y = model_db[["target"]]

#dividing the database
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2, random_state=1)

gb = GradientBoostingClassifier(random_state=5)
params = {"learning_rate": [0.01, 0.1, 0.5],
            "min_samples_split": [5, 10],
            "min_samples_leaf": [3, 5],
            "max_depth":[3,5,10],
            "max_features":["sqrt"],
            "n_estimators":[100, 200]
         } 
gb_cv = GridSearchCV(gb, params, cv = 3, n_jobs = -1, verbose = False)
gb_cv.fit(X_train.values, np.ravel(y_train))

#getting the best model
gb = gb_cv.best_estimator_

我们对随机森林也进行调参和优化:

params_rf = {"max_depth": [20],
                "min_samples_split": [5, 10],
                "max_leaf_nodes": [175, 200],
                "min_samples_leaf": [5, 10],
                "n_estimators": [250],
                 "max_features": ["sqrt"],
                }

rf = RandomForestClassifier(random_state=1)
rf_cv = GridSearchCV(rf, params_rf, cv = 3, n_jobs = -1, verbose = False)
rf_cv.fit(X_train.values, np.ravel(y_train))

rf = rf_cv.best_estimator_

输出结果:

GridSearchCV(cv=3, estimator=RandomForestClassifier(random_state=1), n_jobs=-1,
             param_grid={'max_depth': [20], 'max_features': ['sqrt'],
                         'max_leaf_nodes': [175, 200],
                         'min_samples_leaf': [5, 10],
                         'min_samples_split': [5, 10], 'n_estimators': [250]},
             verbose=False)

我们使用混淆矩阵和ROC-AUC曲线进行了模型分析,结果是:

from sklearn.metrics import confusion_matrix, roc_curve, roc_auc_score

def analyze(model):
    fpr, tpr, _ = roc_curve(y_test, model.predict_proba(X_test.values)[:,1]) #test AUC
    plt.figure(figsize=(15,10))
    plt.plot([0, 1], [0, 1], 'k--')
    plt.plot(fpr, tpr, label="test")

    fpr_train, tpr_train, _ = roc_curve(y_train, model.predict_proba(X_train.values)[:,1]) #train AUC
    plt.plot(fpr_train, tpr_train, label="train")
    auc_test = roc_auc_score(y_test, model.predict_proba(X_test.values)[:,1])
    auc_train = roc_auc_score(y_train, model.predict_proba(X_train.values)[:,1])
    plt.legend()
    plt.title('AUC score is %.2f on test and %.2f on training'%(auc_test, auc_train))
    plt.show()
    
    plt.figure(figsize=(15, 10))
    cm = confusion_matrix(y_test, model.predict(X_test.values))
    sns.heatmap(cm, annot=True, fmt="d")

analyze(gb)

对随机森林进行分析:

analyze(rf)

随机森林模型的性能稍好,但结果上有一点过拟合。分析 Gradient Boosting 模型的 AUC-ROC,它风险较低,我们最终选择它。

💡 应用模型

下面我们基于这个模型将预测世界杯结果。我们先使用了 📘Pandas的read_html 方法获取参加世界杯的球队名单。

dfs = pd.read_html(r"https://en.wikipedia.org/wiki/2022_FIFA_World_Cup#Teams")

from collections.abc import Iterable

for i in range(len(dfs)):
    df = dfs[i]
    cols = list(df.columns.values)
    
    if isinstance(cols[0], Iterable):
        if any("Tie-breaking criteria" in c for c in cols):
            start_pos = i+1

        if any("Match 46" in c for c in cols):
            end_pos = i+1
matches = []
groups = ["A", "B", "C", "D", "E", "F", "G", "H"]
group_count = 0 

table = {}
#TABLE -> TEAM, POINTS, WIN PROBS (CRITERIO DE DESEMPATE)
table[groups[group_count]] = [[a.split(" ")[0], 0, []] for a in list(dfs[start_pos].iloc[:, 1].values)]

for i in range(start_pos+1, end_pos, 1):
    if len(dfs[i].columns) == 3:
        team_1 = dfs[i].columns.values[0]
        team_2 = dfs[i].columns.values[-1]
        
        matches.append((groups[group_count], team_1, team_2))
    else:
        group_count+=1
        table[groups[group_count]] = [[a, 0, []] for a in list(dfs[i].iloc[:, 1].values)]

table
matches[:10]

我们的模型对主队获胜和客队获胜/平局进行了分类。那这里面又怎么区分平局呢? 我们处理的办法如下,我们以两种形式进行预测:

  • A 队 x B 队(模拟 1)
  • B 队 x A 队(模拟 2)

如果两个预测都是 A 队或 B 队获胜,则直接判定该队获胜。如果一次预测A队获胜,而第二次预测B队获胜,则判定结果为平局。下面我们构建代码来逐场模拟比赛,计算分数。

def find_stats(team_1):
#team_1 = "Qatar"
    past_games = team_stats_raw[(team_stats_raw["team"] == team_1)].sort_values("date")
    last5 = team_stats_raw[(team_stats_raw["team"] == team_1)].sort_values("date").tail(5)

    team_1_rank = past_games["rank"].values[-1]
    team_1_goals = past_games.score.mean()
    team_1_goals_l5 = last5.score.mean()
    team_1_goals_suf = past_games.suf_score.mean()
    team_1_goals_suf_l5 = last5.suf_score.mean()
    team_1_rank_suf = past_games.rank_suf.mean()
    team_1_rank_suf_l5 = last5.rank_suf.mean()
    team_1_gp_rank = past_games.points_by_rank.mean()
    team_1_gp_rank_l5 = last5.points_by_rank.mean()

    return [team_1_rank, team_1_goals, team_1_goals_l5, team_1_goals_suf, team_1_goals_suf_l5, team_1_rank_suf, team_1_rank_suf_l5, team_1_gp_rank, team_1_gp_rank_l5]

def find_features(team_1, team_2):
    rank_dif = team_1[0] - team_2[0]
    goals_dif = team_1[1] - team_2[1]
    goals_dif_l5 = team_1[2] - team_2[2]
    goals_suf_dif = team_1[3] - team_2[3]
    goals_suf_dif_l5 = team_1[4] - team_2[4]
    goals_per_ranking_dif = (team_1[1]/team_1[5]) - (team_2[1]/team_2[5])
    dif_rank_agst = team_1[5] - team_2[5]
    dif_rank_agst_l5 = team_1[6] - team_2[6]
    dif_gp_rank = team_1[7] - team_2[7]
    dif_gp_rank_l5 = team_1[8] - team_2[8]
    
    return [rank_dif, goals_dif, goals_dif_l5, goals_suf_dif, goals_suf_dif_l5, goals_per_ranking_dif, dif_rank_agst, dif_rank_agst_l5, dif_gp_rank, dif_gp_rank_l5, 1, 0]

advanced_group = []
last_group = ""

for k in table.keys():
    for t in table[k]:
        t[1] = 0
        t[2] = []
        
for teams in matches:
    draw = False
    team_1 = find_stats(teams[1])
    team_2 = find_stats(teams[2])

    features_g1 = find_features(team_1, team_2)
    features_g2 = find_features(team_2, team_1)

    probs_g1 = gb.predict_proba([features_g1])
    probs_g2 = gb.predict_proba([features_g2])
    
    team_1_prob_g1 = probs_g1[0][0]
    team_1_prob_g2 = probs_g2[0][1]
    team_2_prob_g1 = probs_g1[0][1]
    team_2_prob_g2 = probs_g2[0][0]

    team_1_prob = (probs_g1[0][0] + probs_g2[0][1])/2
    team_2_prob = (probs_g2[0][0] + probs_g1[0][1])/2
    
    if ((team_1_prob_g1 > team_2_prob_g1) & (team_2_prob_g2 > team_1_prob_g2)) | ((team_1_prob_g1 < team_2_prob_g1) & (team_2_prob_g2 < team_1_prob_g2)):
        draw=True
        for i in table[teams[0]]:
            if i[0] == teams[1] or i[0] == teams[2]:
                i[1] += 1
                
    elif team_1_prob > team_2_prob:
        winner = teams[1]
        winner_proba = team_1_prob
        for i in table[teams[0]]:
            if i[0] == teams[1]:
                i[1] += 3
                
    elif team_2_prob > team_1_prob:  
        winner = teams[2]
        winner_proba = team_2_prob
        for i in table[teams[0]]:
            if i[0] == teams[2]:
                i[1] += 3
    
    for i in table[teams[0]]: #adding criterio de desempate (probs por jogo)
            if i[0] == teams[1]:
                i[2].append(team_1_prob)
            if i[0] == teams[2]:
                i[2].append(team_2_prob)

    if last_group != teams[0]:
        if last_group != "":
            print("\n")
            print("Group %s advanced: "%(last_group))
            
            for i in table[last_group]: #adding crieterio de desempate
                i[2] = np.mean(i[2])
            
            final_points = table[last_group]
            final_table = sorted(final_points, key=itemgetter(1, 2), reverse = True)
            advanced_group.append([final_table[0][0], final_table[1][0]])
            for i in final_table:
                print("%s -------- %d"%(i[0], i[1]))
        print("\n")
        print("-"*10+" Starting Analysis for Group %s "%(teams[0])+"-"*10)
        
    if draw == False:
        print("Group %s - %s vs. %s: Winner %s with %.2f probability"%(teams[0], teams[1], teams[2], winner, winner_proba))
    else:
        print("Group %s - %s vs. %s: Draw"%(teams[0], teams[1], teams[2]))
    last_group =  teams[0]


print("\n")
print("Group %s advanced: "%(last_group))

for i in table[last_group]: #adding crieterio de desempate
    i[2] = np.mean(i[2])
            
final_points = table[last_group]
final_table = sorted(final_points, key=itemgetter(1, 2), reverse = True)
advanced_group.append([final_table[0][0], final_table[1][0]])
for i in final_table:
    print("%s -------- %d"%(i[0], i[1]))

结果是:

---------- Starting Analysis for Group A ----------
Group A - Qatar vs. Ecuador: Winner Ecuador with 0.62 probability
Group A - Senegal vs. Netherlands: Winner Netherlands with 0.62 probability
Group A - Qatar vs. Senegal: Winner Senegal with 0.60 probability
Group A - Netherlands vs. Ecuador: Winner Netherlands with 0.73 probability
Group A - Ecuador vs. Senegal: Draw
Group A - Netherlands vs. Qatar: Winner Netherlands with 0.78 probability


Group A advanced: 
Netherlands -------- 9
Senegal -------- 4
Ecuador -------- 4
Qatar -------- 0




---------- Starting Analysis for Group B ----------
Group B - England vs. Iran: Winner England with 0.62 probability
Group B - United States vs. Wales: Draw
Group B - Wales vs. Iran: Draw
Group B - England vs. United States: Winner England with 0.61 probability
Group B - Wales vs. England: Winner England with 0.64 probability
Group B - Iran vs. United States: Winner United States with 0.58 probability




Group B advanced: 
England -------- 9
United States -------- 4
Wales -------- 2
Iran -------- 1




---------- Starting Analysis for Group C ----------
Group C - Argentina vs. Saudi Arabia: Winner Argentina with 0.79 probability
Group C - Mexico vs. Poland: Draw
Group C - Poland vs. Saudi Arabia: Winner Poland with 0.70 probability
Group C - Argentina vs. Mexico: Winner Argentina with 0.67 probability
Group C - Poland vs. Argentina: Winner Argentina with 0.71 probability
Group C - Saudi Arabia vs. Mexico: Winner Mexico with 0.71 probability




Group C advanced: 
Argentina -------- 9
Poland -------- 4
Mexico -------- 4
Saudi Arabia -------- 0




---------- Starting Analysis for Group D ----------
Group D - Denmark vs. Tunisia: Winner Denmark with 0.68 probability
Group D - France vs. Australia: Winner France with 0.71 probability
Group D - Tunisia vs. Australia: Draw
Group D - France vs. Denmark: Draw
Group D - Australia vs. Denmark: Winner Denmark with 0.71 probability
Group D - Tunisia vs. France: Winner France with 0.69 probability




Group D advanced: 
France -------- 7
Denmark -------- 7
Tunisia -------- 1
Australia -------- 1




---------- Starting Analysis for Group E ----------
Group E - Germany vs. Japan: Winner Germany with 0.62 probability
Group E - Spain vs. Costa Rica: Winner Spain with 0.76 probability
Group E - Japan vs. Costa Rica: Winner Japan with 0.63 probability
Group E - Spain vs. Germany: Draw
Group E - Japan vs. Spain: Winner Spain with 0.67 probability
Group E - Costa Rica vs. Germany: Winner Germany with 0.65 probability




Group E advanced: 
Spain -------- 7
Germany -------- 7
Japan -------- 3
Costa Rica -------- 0




---------- Starting Analysis for Group F ----------
Group F - Morocco vs. Croatia: Winner Croatia with 0.58 probability
Group F - Belgium vs. Canada: Winner Belgium with 0.75 probability
Group F - Belgium vs. Morocco: Winner Belgium with 0.67 probability
Group F - Croatia vs. Canada: Winner Croatia with 0.64 probability
Group F - Croatia vs. Belgium: Winner Belgium with 0.64 probability
Group F - Canada vs. Morocco: Draw




Group F advanced: 
Belgium -------- 9
Croatia -------- 6
Morocco -------- 1
Canada -------- 1




---------- Starting Analysis for Group G ----------
Group G - Switzerland vs. Cameroon: Winner Switzerland with 0.69 probability
Group G - Brazil vs. Serbia: Winner Brazil with 0.72 probability
Group G - Cameroon vs. Serbia: Winner Serbia with 0.66 probability
Group G - Brazil vs. Switzerland: Draw
Group G - Serbia vs. Switzerland: Winner Switzerland with 0.57 probability
Group G - Cameroon vs. Brazil: Winner Brazil with 0.81 probability




Group G advanced: 
Brazil -------- 7
Switzerland -------- 7
Serbia -------- 3
Cameroon -------- 0




---------- Starting Analysis for Group H ----------
Group H - Uruguay vs. South Korea: Winner Uruguay with 0.62 probability
Group H - Portugal vs. Ghana: Winner Portugal with 0.81 probability
Group H - South Korea vs. Ghana: Winner South Korea with 0.76 probability
Group H - Portugal vs. Uruguay: Winner Portugal with 0.60 probability
Group H - Ghana vs. Uruguay: Winner Uruguay with 0.77 probability
Group H - South Korea vs. Portugal: Winner Portugal with 0.67 probability




Group H advanced: 
Portugal -------- 9
Uruguay -------- 6
South Korea -------- 3
Ghana -------- 0

上面的模型有一些结果很有趣,比如巴西和瑞士以及丹麦和法国之间的平局。

在季后赛中,思路是一样的:

advanced = advanced_group


playoffs = {"Round of 16": [], "Quarter-Final": [], "Semi-Final": [], "Final": []}


for p in playoffs.keys():
    playoffs[p] = []


actual_round = ""
next_rounds = []


for p in playoffs.keys():
    if p == "Round of 16":
        control = []
        for a in range(0, len(advanced*2), 1):
            if a < len(advanced):
                if a % 2 == 0:
                    control.append((advanced*2)[a][0])
                else:
                    control.append((advanced*2)[a][1])
            else:
                if a % 2 == 0:
                    control.append((advanced*2)[a][1])
                else:
                    control.append((advanced*2)[a][0])


        playoffs[p] = [[control[c], control[c+1]] for c in range(0, len(control)-1, 1) if c%2 == 0]
        
        for i in range(0, len(playoffs[p]), 1):
            game = playoffs[p][i]
            
            home = game[0]
            away = game[1]
            team_1 = find_stats(home)
            team_2 = find_stats(away)


            features_g1 = find_features(team_1, team_2)
            features_g2 = find_features(team_2, team_1)
            
            probs_g1 = gb.predict_proba([features_g1])
            probs_g2 = gb.predict_proba([features_g2])
            
            team_1_prob = (probs_g1[0][0] + probs_g2[0][1])/2
            team_2_prob = (probs_g2[0][0] + probs_g1[0][1])/2
            
            if actual_round != p:
                print("-"*10)
                print("Starting simulation of %s"%(p))
                print("-"*10)
                print("\n")
            
            if team_1_prob < team_2_prob:
                print("%s vs. %s: %s advances with prob %.2f"%(home, away, away, team_2_prob))
                next_rounds.append(away)
            else:
                print("%s vs. %s: %s advances with prob %.2f"%(home, away, home, team_1_prob))
                next_rounds.append(home)
            
            game.append([team_1_prob, team_2_prob])
            playoffs[p][i] = game
            actual_round = p
        
    else:
        playoffs[p] = [[next_rounds[c], next_rounds[c+1]] for c in range(0, len(next_rounds)-1, 1) if c%2 == 0]
        next_rounds = []
        for i in range(0, len(playoffs[p])):
            game = playoffs[p][i]
            home = game[0]
            away = game[1]
            team_1 = find_stats(home)
            team_2 = find_stats(away)
            
            features_g1 = find_features(team_1, team_2)
            features_g2 = find_features(team_2, team_1)
            
            probs_g1 = gb.predict_proba([features_g1])
            probs_g2 = gb.predict_proba([features_g2])
            
            team_1_prob = (probs_g1[0][0] + probs_g2[0][1])/2
            team_2_prob = (probs_g2[0][0] + probs_g1[0][1])/2
            
            if actual_round != p:
                print("-"*10)
                print("Starting simulation of %s"%(p))
                print("-"*10)
                print("\n")
            
            if team_1_prob < team_2_prob:
                print("%s vs. %s: %s advances with prob %.2f"%(home, away, away, team_2_prob))
                next_rounds.append(away)
            else:
                print("%s vs. %s: %s advances with prob %.2f"%(home, away, home, team_1_prob))
                next_rounds.append(home)
            game.append([team_1_prob, team_2_prob])
            playoffs[p][i] = game
            actual_round = p

结果如下:

----------
Starting simulation of Round of 16
----------




Netherlands vs. United States: Netherlands advances with prob 0.54
Argentina vs. Denmark: Argentina advances with prob 0.59
Spain vs. Croatia: Spain advances with prob 0.61
Brazil vs. Uruguay: Brazil advances with prob 0.64
Senegal vs. England: England advances with prob 0.64
Poland vs. France: France advances with prob 0.67
Germany vs. Belgium: Belgium advances with prob 0.53
Switzerland vs. Portugal: Portugal advances with prob 0.57
----------
Starting simulation of Quarter-Final
----------




Netherlands vs. Argentina: Netherlands advances with prob 0.51
Spain vs. Brazil: Brazil advances with prob 0.54
England vs. France: England advances with prob 0.51
Belgium vs. Portugal: Portugal advances with prob 0.52
----------
Starting simulation of Semi-Final
----------




Netherlands vs. Brazil: Brazil advances with prob 0.55
England vs. Portugal: England advances with prob 0.51
----------
Starting simulation of Final
----------




Brazil vs. England: Brazil advances with prob 0.56

我们以图示的方式来展示我们的结果。

import networkx as nx
from networkx.drawing.nx_pydot import graphviz_layout

plt.figure(figsize=(15, 10))
G = nx.balanced_tree(2, 3)


labels = []


for p in playoffs.keys():
    for game in playoffs[p]:
        label = f"{game[0]}({round(game[2][0], 2)}) \n {game[1]}({round(game[2][1], 2)})"
        labels.append(label)
    
labels_dict = {}
labels_rev = list(reversed(labels))

for l in range(len(list(G.nodes))):
    labels_dict[l] = labels_rev[l]

pos = graphviz_layout(G, prog='twopi')
labels_pos = {n: (k[0], k[1]-0.08*k[1]) for n,k in pos.items()}
center  = pd.DataFrame(pos).mean(axis=1).mean()
    

nx.draw(G, pos = pos, with_labels=False, node_color=range(15), edge_color="#bbf5bb", width=10, font_weight='bold',cmap=plt.cm.Greens, node_size=5000)
nx.draw_networkx_labels(G, pos = labels_pos, bbox=dict(boxstyle="round,pad=0.3", fc="white", ec="black", lw=.5, alpha=1),
                        labels=labels_dict)
texts = ["Round \nof 16", "Quarter \n Final", "Semi \n Final", "Final\n"]
pos_y = pos[0][1] + 55
for text in reversed(texts):
    pos_x = center
    pos_y -= 75 
    plt.text(pos_y, pos_x, text, fontsize = 18)

plt.axis('equal')
plt.show()

模拟世界杯的结果如下,我们的模型预测巴西队获胜,决赛中对阵英格兰队的概率为 56%! 模型预测结果中最大的冷门是比利时击败德国和英格兰进入决赛,在四分之一决赛中淘汰法国。看到一些概率非常小的比赛很有趣,比如荷兰对阿根廷。

💡 总结

在本篇内容中,ShowMeAI应用机器学习的方法,对世界杯参赛球队进行分析和建模,模拟与预测世界杯比赛结果。全篇内容包括详细的数据预处理、数据分析、特征工程、机器学习建模与模型调参优化,模型应用及结果可视化。当然,世界杯的有趣之处就在于,比赛场上瞬息万变,任何的结果都可能会发生,让我们一起跟随世界杯,欣赏每一场精彩的比赛吧!

参考资料

  • 📘 GridSearchCV
  • 📘 Pandas的read_html
  • 📘 图解数据分析:从入门到精通系列教程:https://www.showmeai.tech/tutorials/33
  • 📘 机器学习实战:手把手教你玩转机器学习系列:https://www.showmeai.tech/tutorials/41
  • 📘 Python数据分析 | Seaborn工具与数据可视化:https://showmeai.tech/article-detail/151
  • 📘 AI垂直领域工具库速查表 | Scikit-Learn 速查表:https://www.showmeai.tech/article-detail/108
  • 📘 机器学习实战 | 机器学习特征工程最全解读:https://showmeai.tech/article-detail/208

推荐阅读

  • 🌍 数据分析实战系列 :https://www.showmeai.tech/tutorials/40
  • 🌍 机器学习数据分析实战系列:https://www.showmeai.tech/tutorials/41
  • 🌍 深度学习数据分析实战系列:https://www.showmeai.tech/tutorials/42
  • 🌍 TensorFlow数据分析实战系列:https://www.showmeai.tech/tutorials/43
  • 🌍 PyTorch数据分析实战系列:https://www.showmeai.tech/tutorials/44
  • 🌍 NLP实战数据分析实战系列:https://www.showmeai.tech/tutorials/45
  • 🌍 CV实战数据分析实战系列:https://www.showmeai.tech/tutorials/46
  • 🌍 AI 面试题库系列:https://www.showmeai.tech/tutorials/48

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/103534.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C2. Potions (Hard Version)(可以后悔的选取 + 一种新奇的优先队列用法)

Problem - 1526C2 - Codeforces 这是该问题的困难版本。唯一不同的是&#xff0c;在这个版本中&#xff0c;n≤200000。只有当两个版本的问题都解决了&#xff0c;你才能进行黑客攻击。 有n个药水排成一行&#xff0c;最左边是药水1&#xff0c;最右边是药水n。每种药水在喝下…

Eclipse安装和环境的基本配置

Eclipse安装 安装包 链接&#xff1a;https://pan.baidu.com/s/13LXiyGmgdAQ2MYXhim1WMg 提取码&#xff1a;WADS 不会安装的可以参考这篇文章 链接: 安装教程文章 eclipse怎么更改存储位置 1.1 file-> Switch Workspace ->Other 打开后可以看到保存文件的路径也可以…

疫情之下连锁餐饮行业积极求变,集团采购协同管理系统重构企业采购数字化

2019年底至今&#xff0c;新冠肺炎疫情已进入了第三个年头。作为接触性、聚集性行业&#xff0c;国内餐饮业持续承压&#xff0c;经历了一系列的波折。尤其2022年以来&#xff0c;国内多地出现了此起彼伏的疫情&#xff0c;给餐企带来了较大冲击&#xff0c;餐饮行业整体营收收…

【推荐】安全访问服务边缘(SASE)资料汇总合集24篇

Secure Access Service Edge (SASE) 是Gartner推出的一个新的技术理念。SASE将 SD-WAN和网络安全解决方案&#xff08;FWaaS、CASB、SWG 和ZTNA&#xff09;融合到统一的云原生服务中。SASE是Gartner最新提出的一个技术理念&#xff0c;SASE用于从分布式云服务交付聚合的企业网…

Web前端105天-day49-jQuery

jQuery02 目录 前言 一、复习 二、标签内容 三、get请求 四、新增子元素 五、委托 六、克隆 七、加载HTML 八、准备就绪 九、Node.js 十、js中提示jQuery的方案 十一、location 十二、根据地址栏参数加载页面 十三、全局样式变量 总结 前言 jQuery02学习开始 一…

vi\vim编辑器的使用及命令、快捷键

vi\vim编辑器 1、vi\vim编辑器介绍 vi\vim是visual interface的简称&#xff0c;是Linux中最经典的文本编辑器。 同图形化界面中的文本编辑器一样&#xff0c;vi是命令行下对文本文件进行编辑的绝佳选择。 vim是vi的加强版本&#xff0c;兼容vi的所有指令&#xff0c;不仅能…

信息化时代,相比于人工服务客户更喜欢自助式服务

对于SaaS产品&#xff0c;为客户提供自助式服务&#xff0c;帮助客户能够自行完成任务和解决问题&#xff0c;给到客户更好的使用体验&#xff0c;对于SaaS产品&#xff0c;搭建一个自助式知识库门户和产品知识库尤为重要。在选购产品后&#xff0c;如果没有获得很好的客户服务…

TraceView使用

TraceView 是什么&#xff1f; TraceView 是 Android SDK 中内置的一个工具&#xff0c;用于加载 trace 文件&#xff0c;用图形的形式展示代码的执行时间、调用次数及调用栈&#xff0c;便于我们分析。 如何生成 trace 文件&#xff1f; 使用代码生成 Debug.startMethodTra…

新零售时代下,物流行业迎来新机遇

电商&#xff0c;一个异军突起的新行业&#xff0c;将改变传统商业旧模式。根据相关数据显示&#xff0c;2010-2019年&#xff0c;我国电商交易规模从4.5万亿元增长到34.8万亿元&#xff0c;年均复合增速达25%。在电商飞速发展的态势下&#xff0c;物流行业也迎来了蓬勃发展。 …

【华为OD机试真题2023 JAVA】去除多余空格

华为OD机试真题,2023年度机试题库全覆盖,刷题指南点这里 去除多余空格 知识点字符串数组队列 时间限制:2s 空间限制:256MB 限定语言:不限 题目描述: 去除文本多余空格,但不去除配对单引号之间的多余空格。给出关键词的起始和结束下标,去除多余空格后刷新关键词的起始和…

Python3和Django的单元测试示例

1. unittest unittest是python自带的单元测试框架&#xff0c;unittest框架是受到 JUnit 的启发&#xff0c;与其他语言中的主流单元测试框架有着相似的风格。其支持测试自动化&#xff0c;配置共享和关机代码测试。支持将测试样例聚合到测试集中&#xff0c;并将测试与报告框…

性能测试(二)—— JMeter元件作用域和执行顺序、JMeter示例、JMeter参数化

目录 一、JMeter元件作用域和执行顺序 1. 元件的基本介绍 2. 元件作用域 3. 元件执行顺序 二、JMeter使用示例 1. JMeter第一个案例 2. 重点组件 2.1 线程组 2.2 HTTP请求 2.3 查看结果树 三、JMeter参数化 1. JMeter参数化常用方式 2. 用户定义的变量 2.1 场景 …

详解OpenCV的线段绘制函数line()

函数line()用于在图像上绘制圆形。 函数line()利用两点确定一条直线的原理在图像中绘制出一条线段。 C原型如下&#xff1a; void cv::line(InputOutputArray img,Point pt1,Point pt2,const Scalar & color,int thickness 1,int lineType LINE_8,int shift 0)Python原…

智能优化算法:人工蜂鸟算法 - 附代码

智能优化算法&#xff1a;人工蜂鸟算法 摘要&#xff1a;人工蜂鸟算法( AHA )是 ZHAO 等 于 2021 年提出的一种新型元启发式优化算法 . 该算法模拟了自然界中蜂鸟轴向飞行、对角飞行、全方位飞行 3 种特殊飞行技能和引导觅食、区域觅食、迁移觅食 3 种智能觅食策略,并通过引入…

【大数据入门核心技术-Spark】(三)Spark 本地模式安装

目录 一、Spark集群三种部署模式 1、 Local模式 2、Spark Standalone模式 3、Spark on YARN模式 二、准备工作 1、Hadoop环境安装 2、下载spark 三、安装spark 1、解压 2、配置环境变量 3、修改配置文件 4、测试安装是否成功 四、运行测试spark 1、读取本地文件 …

【Java|golang】1760. 袋子里最少数目的球---逆向二分法

给你一个整数数组 nums &#xff0c;其中 nums[i] 表示第 i 个袋子里球的数目。同时给你一个整数 maxOperations 。 你可以进行如下操作至多 maxOperations 次&#xff1a; 选择任意一个袋子&#xff0c;并将袋子里的球分到 2 个新的袋子中&#xff0c;每个袋子里都有 正整数…

buildroot 升级软件包

因为软件漏洞问题&#xff0c;需要升级软件包&#xff0c;如 ncurses、libpwquality 等&#xff1b; 我目前采用的方法如下&#xff1a; 环境&#xff1a; 下载一个 buildroot 的最新版本&#xff1a; git clone git://git.buildroot.net/buildroot.git 我使用的 linux 环…

深入底层,spring mvc父子容器初始化过程解析

spring mvc父子容器初始化过程解析1、为什么要学习spring mvc底层&#xff1f;2、Java Web应该学什么&#xff1f;1、Tomcat2、servlet3、filter4、listener3、spring mvc容器初始化过程1、以WebApplicationInitializer.onStartup()方法作为入口2、registerDispatcherServlet()…

Java真的不难(五十二)Stream流的深入理解与流式编程

Stream流的深入理解与流式编程&#xff1a; 在今年年初小应学长也写过Stream与Lambda的两篇文章&#xff0c;今天先将两者结合起来进行流式编程 一、关于这两者 Stream与Lambda都是Java8引入的新概念&#xff0c;lambda在Java编程中对于函数式编程的支持&#xff0c;有助于代…

H5 WebSQL每日成语

有一天看到同事发的类似 这种成语填空一样的内容。 惟利( )视 为德( )终 质非文( ) ( )追耗子 烂漫天( ) ( )则改之&#xff0c;无则嘉勉 得( )之作 哀( )如潮 于是就去网上找成语数据库表的 SQL… 哈哈哈 很容易就找到了. 本来打算写个前后端&#xff0c;想了想可以但没…