【操作系统笔记】任务调度信号处理CPU上下文

news2025/9/20 2:54:37

任务调度

何时需要调度执行一个任务?

  • 第一:当任务创建的时候,需要决定是继续执行父进程,还是调度执行子进程

  • 第二:在一个任务退出时,需要做出调度决策,需要从 TASK_RUNNING 状态的所有任务中选择一个任务来执行

  • 第三:当一个任务阻塞在 I/O 上,或者因为其他原因阻塞,必须调度另一个任务执行

  • 第四:在一个 I/O 中断发生时,必须做出调度决策。

    I/O 中断来源于 I/O 设备,说明 I/O 的工作结束了,需要唤醒正在阻塞在这个 I/O 上的进程,这个时候,调度程序要决定是否调度这个被唤醒的任务。

  • 第五:时钟中断发生的时候

在这里插入图片描述

问题:如何实现对响应时间敏感的调度程序?

  • 轮转调度(Round-Robin, RR)

  • 基本思想:在一个时间片内运行一个任务,时间片结束,然后切换到下一个任务,而不是运行一个任务直到结束。这样反复执行,直到所有任务完成。

  • RR 有时被称为时间切片,时间片长度必须是时钟中断周期的倍数。如果时钟中断是每 10ms 中断一次,则时间片可以是 10ms20ms10ms 的任何倍数。

信号处理

什么是信号?

例如 kill -9 2334,内核先找到pid = 2334的进程,并杀掉这个进程以及 tgid = 2334 的线程。

  • 给进程2334发送9号信号:SIGKILL

  • 一共有 64 个信号:kill -l

  • 信号是很短的消息,可以被发送到一个进程或一组进程

  • 每个信号,本质上就是一个数字而已

在这里插入图片描述

信号处理大体流程:

在这里插入图片描述

信号发送:

  • kill(pid, sig):向 pid 所在的线程组发送一个sig号信号

  • tkill(pid, sig):向 pid 进程(或线程)发送一个sig号信号

  • tgkill(pid, sig, tgid):向 pid 进程(或线程)发送一个sig号信号(检查下这个进程的tgid是否等于参数中的 tgid

给一个线程组发送的信号,称为共享信号,给一个进程/线程发送的信号,称为私有信号。

信号已发送,但未处理的信号称为挂起信号,存储在 task_struct

在这里插入图片描述
在这里插入图片描述

信号处理:

每个信号都有默认的处理方式:

  • Terminate:终止进程(杀死)

  • Dump:终止进程(杀死),将进程运行的上下文信息保存到文件中,方便查询进程相关信息

  • Ignore:信号被忽略

  • Stop:停止进程,将进程的状态设置为TASK_STOPPED

  • Continue:如果进程的状态是TASK_STOPPED,那么把它 设置为 TASK_RUNNIND

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

CPU 上下文、进程上下文以及中断上下文

CPU 上下文

在 CPU 执行程序指令的时候,需要一系列的 CPU 寄存器来存储 CPU 计算时要用到的指令、临时数据等。

第一个是指令指针寄存器 (eip 或者 rip),这个其实就是我们平时说的 程序计数器 (PC),它是 CPU 中最重要的寄存器了

  • 32 位系统的话,寄存器的名字以 e 开头
  • 64 位系统的话,寄存器的名字以 r 开头

它里面存储的是:下一条需要执行的指令在内存中的虚拟地址。CPU 的工作就是不断从内存中取出它指向指令,然后执行这一条指令,同时将下一条指令在内存的地址存放到指令寄存器中。如此不断重复,这就是 CPU 的工作了。

第二个是通用寄存器,一般用于存储 CPU 执行指令过程中产生的中间数据,一般有下面的寄存器:

  1. eax / rax:通常用于执行加法,函数调用的返回值一般也放在这里
  2. ebx / rbx:存放中间临时数据
  3. ecx / rcx:通常用于计数器
  4. edx / rdx:用于存放整数除法产生的余数
  5. esp / rsp:函数调用栈的栈顶指针,指向栈的顶部
  6. ebp / rbp:函数调用栈的栈底指针,指向栈的底部
  7. esi / rsi:存放中间临时数据
  8. edi / rdi:存放中间临时数据

这些通用寄存器是程序执行时最常用的,也是最基础的寄存器,程序执行过程中,绝大部分时间都是在操作这些寄存器来实现指令的功能。

第三个是标志寄存器 (flags),里面有众多标记位,记录了 CPU 执行指令过程中的一系列状态,这些状态大都由 CPU 自动设置。

我们在【操作系统一:程序是如何运行的?】中的第 11 小节 中,讲的 if 语句的汇编指令中,就使用了标记寄存器中的零标志条件码 (Zero Flag) 这一位标志码,来实现程序指令的跳转功能。

在这里插入图片描述

第四个是段寄存器,段寄存器用于分段寻址,虽然 Linux 内核采用分页寻址,但是为了保持兼容,段寄存器有些地方仍然在使用,所以,我们还需要关心,段寄存器有 6 个:

  1. CS:代码段
  2. DS:数据段
  3. SS:栈段
  4. ES:扩展段
  5. FS
  6. GS

总结:

  • 指令指针寄存器、通用寄存器、标志位寄存器以及段寄存器,这四组寄存器共同构成了一个基本的指令执行环境,也可以称为 CPU 上下文

  • 每个寄存器,CPU 中只有一个,比如指令指针寄存器,在 CPU 中只有一个

  • 每个进程在执行的时候,都会有各自的 CPU 上下文信息,也就是说每个进程执行的时候,CPU 中的寄存器的值都有可能不同的

系统调用引起的 CPU 上下文切换

知道了什么是 CPU 上下文,就很容易理解 CPU 上下文切换,CPU 上下文切换就是 CPU 把前一个进程的 CPU 上下文保存起来,然后再加载新的进程的 CPU 上下文,这样,CPU 就可以根据指令指针中存放的新的指令内存地址,执行新的进程了。

其实,CPU 上下文切换就是修改 CPU 中的寄存器的值而已

保存下来的 CPU 上下文,会存储在系统内核中,但是具体被保存在哪里呢?这个需要看具体的场景,我们先来看看系统调用

操作系统将进程的运行空间分为内核空间和用户空间:

  • 内核空间具有最高的权限,可以直接访问所有的资源

  • 用户空间只能访问受限资源,不能直接访问磁盘等硬件设备,必须通过系统调用陷入到内核中,才能访问这些特权资源。

进程在用户空间运行时,也就是 CPU 执行用户程序代码,被称为进程的用户态。

而陷入内核空间的时候,那么 CPU 将执行内核程序代码,被称为进程的内核态。

从用户态陷入内核态,需要通过系统调用来完成。在系统调用的过程中会发生 两次 CPU 上下文切换

  1. 首先将进程的用户态的 CPU 上下文保存到内核栈的 pt_regs 中,然后,为了执行内核的代码指令,操作系统需要将 CPU 寄存器的值更新为内核态相关的值,然后开始执行内核态程序
  2. 当系统调用结束后,将内核栈中的 pt_regs 中的用户态的 CPU 上下文,恢复到 CPU 寄存器中,然后切换用户空间,继续运行进程

注意:系统调用过程中一直是在同一个进程中进行的。

进程 / 线程上下文切换

一个进程的上下文信息包含:

  1. CPU 上下文
  2. 用户态虚拟内存,即 mm_struct,这个里面包含了进程页表
  3. TLB 页表项缓存数据
  4. 磁盘文件信息
  5. 信号处理信息
  6. 内核栈

在一个进程里,所有的线程共享进程的资源,比如虚拟内存、磁盘文件、信号处理等,不过线程也有自己的数据,一个线程的上下文包含:

  1. CPU 上下文
  2. 线程用户栈
  3. 线程内核栈

在 Linux 中线程是 CPU 任务调度的最小单位。

一个 CPU 同一时刻只能调度执行一个线程,所以,多线程运行的时候,肯定会出现线程切换。

线程切换又分为三种情况:

  1. 切换的两个线程是在同一个进程内
  2. 切换的两个线程不在同一个进程内
  3. 切换的两个线程有一个是内核线程

接下来我们分别来看下以上三种情况。

第一种情况:切换的两个线程在同一个进程内。 这种情况下需要做下面的几件事:

  1. 切换 CPU 上下文
  2. 切换用户栈
  3. 切换内核栈

第二种情况:切换的两个线程不在同一个进程内。 这种情况下需要做下面的几件事:

  1. 切换 CPU 上下文
  2. 切换用户态虚拟内存 (这里会切换用户栈)
  3. 切换页表
  4. 刷新 TLB 页表项缓存
  5. 切换内核栈

可以看出切换两个不在同一个进程的线程,其实就是切换进程上下文了,比切换在同一个进程中的两个线程开销要大。

第三种情况:切换的两个线程中有一个是内核线程。 这种情况下需要做下面的几件事:

  1. 切换 CPU 上下文
  2. 切换内核栈

因为内核线程只运行在内核,没有用户空间的虚拟内存,所以不需要切换用户态虚拟内存、不需要切换页表,也就不需要刷新 TLB。这样的话,内核线程切换的开销也不大。

中断上下文切换

为了快速响应硬件的事件,中断处理会打断进程的正常调度和执行,转而调用中断处理程序,响应设备事件。

而在打断其他进程时,就需要将进程当前的状态保存下来,这样在中断结束后,进程仍然可以从原来的状态恢复运行。

跟进程上下文不同,中断上下文切换并不涉及到进程的用户态。

所以,即便中断过程打断了一个正处在用户态的进程,也不需要保存和恢复这个进程的虚拟内存、磁盘文件、信号处理等用户态资源。

中断上下文,其实只包括内核态中断服务程序执行所必需的状态,包括 CPU 寄存器、内核堆栈、硬件中断参数等。

对同一个 CPU 来说,中断处理比进程拥有更高的优先级,所以中断上下文切换并不会与进程上下文切换同时发生。

同样道理,由于中断会打断正常进程的调度和执行,所以大部分中断处理程序都短小精悍,以便尽可能快的执行结束。

另外,跟进程上下文切换一样,中断上下文切换也需要消耗 CPU,切换次数过多也会耗费大量的 CPU,甚至严重降低系统的整体性能。

所以,当你发现中断次数过多时,就需要注意去排查它是否会给你的系统带来严重的性能问题。

总结

  • CPU 上下文一组 CPU 寄存器,包括:指令指针寄存器、通用寄存器、标志位寄存器以及段寄存器,不同进程切换时切换 CPU 上下文就是指切换 CPU 寄存器中的值

  • 系统调用会发生 2 次 CPU 上下文切换,从用户态陷入内核态, 首先将进程的用户态的 CPU 上下文保存到内核栈中,然后操作系统需要将 CPU 寄存器的值更新为内核态相关的值,开始执行内核态程序代码指令,当系统调用结束后,将内核栈中的用户态的 CPU 上下文,恢复到 CPU 寄存器中,然后切换用户空间,继续运行进程

  • 进程 / 线程上下文切换时,也会发生 CPU 上下文切换

    1)如果是在同一个进程内的两个线程切换,则需要切换CPU上下文、用户栈内核栈

    2)如果是在不同进程的两个线程切换,则需要切换CPU上下文、用户栈内核栈,还需切换页表,刷新TLB页表项缓存,此时就是切换两个进程

    3)如果切换的两个线程中有一个是内核线程,则只需要切换CPU上下文内核栈,因为内核线程只运行在内核,没有用户空间的虚拟内存,所以不需要切换用户态虚拟内存、不需要切换页表

  • 中断上下文切换不会涉及进程的用户态,只包括内核态中断服务程序执行所必需的状态,包括 CPU 寄存器、内核堆栈、硬件中断参数等

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1026890.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

java Spring Boot验证码美化,白色背景 随机四个数 每个字随机颜色

我前文 Spring Boot2.7生成用于登录的图片验证码讲述了生成验证码的方法 但是这样生成验证码 非常难看 比较说 验证码是要展示到web程序中的 这样让用户看着 属实不太好 我们可以将接口改成 GetMapping(value "/captcha", produces MediaType.IMAGE_PNG_VALUE) …

Webpack 热更新原理

什么是热更新 模块热替换(hot module replacement 或 HMR)是 webpack 提供的最有用的功能之一。它允许在运行时更新所有类型的模块,而无需完全刷新 一般的刷新我们分两种: 一种是页面刷新,不保留页面状态,就是简单粗暴&#xf…

思维链(Chain-of-Thought Prompting Elicits Reasoning in Large Language Models)

概括 论文主要描述了一种用思维链的提升LLM模型推理能力的方式,并且通过实验的方式,证明了思维链在算术、常识和符号等任务方面的显著效果。仅通过540B大小的PaLM模型,通过8个思维链样例就可以实现在GSM8K上的sota效果。 具体工作 这篇论文…

STM32 OLED屏幕显示详解

目录 1.OLED介绍 2.OLED如何显示一个点? 内存管理​编辑​编辑 页地址模式 水平地址模式​编辑 垂直地址模式 ​编辑 3.OLED显示图片 用到的库函数: 向OLED写命令的封装: 显示图片代码示例: 1.OLED介绍 OLED是有机发光…

论文笔记 DETR

detr 摘要和引言 2020论文facebook不需要proposal,不需要基于anchor的先验知识(比如预训练的模型),也不需要NMS进行筛选,直接端到端不需要后处理利用transformer的全局建模能力,看成集合预测问题,不会输出很多冗余的…

谷歌AI机器人Bard发布强大更新,支持插件功能并增强事实核查;全面整理高质量的人工智能、机器学习、大数据等技术资料

🦉 AI新闻 🚀 谷歌AI机器人Bard发布强大更新,支持插件功能并增强事实核查 摘要:谷歌的人工智能聊天机器人Bard发布了一项重大更新,增加了对谷歌应用的插件支持,包括 Gmail、Docs、Drive 等,并…

visual studio 安装包丢失或损坏

visual studio 安装包丢失或损坏 如下图所示为vs2015报错信息。 解决方案: 找到镜像文件或者压缩包的解压位置; 路径:C:\Users\Administrator\Desktop\packages 复制该路径至上图的请提供搜索包的位置。

高项新版教程(第四版)解读+学习指导

第四版主要内容 技术部分 信息化教程、软件工程、网络技术是原来的,学习原来的录播。 新基建、工业互联网、车联网、农业现代化、数字化转型、元宇宙等是新增,以直播讲。 管理部分 变化不是太大 。 整合管理、人力变为资源管理、风险管理新增内容。 …

在VMware虚拟机中固定CentOS系统ip(使用桥接模式)

目录 一、前置说明二、前置准备2.1、切换虚拟机网络为桥接模式2.2、查看本机网络信息 三、配置CentOS系统IP3.1、进入系统输入ip addr 查看本机网络配置名称3.2、查看网络配置目录,网络配置文件名称3.3、修改网络配置文件 ifcfg-ens33 固定IP3.4、重启网络 一、前置…

mysql-connector-java-8.0.11-sources.jar下载后无法运行

目录 问题背景 解决方法 1. 确保驱动已添加到项目中 2. 确保驱动版本与你的代码匹配 问题背景 今天写代码遇到这个报错,解决后发出来分享一下: java.lang.ClassNotFoundException: com.mysql.cj.jdbc.Driver at java.net.URLClassLoader.findClass…

Kafka 时间轮算法

文章目录 前言Java 任务调度TimerDelayedWorkQueue的最小堆实现 时间轮Kafka中时间轮实现 前言 Kafka中存在大量的延时操作。 发送消息-超时重试机制的延时。ACKS 确认机制的延时。 Kafka并没有使用JDK自带的Timer或者DelayQueue来实现延迟的功能,而是基于时间轮…

系统架构设计师(第二版)学习笔记----需求工程

【原文链接】系统架构设计师(第二版)学习笔记----需求工程 文章目录 一、需求定义1.1 需求包含的内容1.2 软件需求的3个不同层次1.3 需求工程的阶段1.4 需求管理的主要内容 二、需求获取2.1 需求获取的基本步骤2.2 需求获取方法2.3 需求讨论会参与人员2.…

grafana对指标进行组合计算

在使用Grafana配置图表看板时,我们可能需要对多个查询条件筛选出来的结果进行计算,把计算结果生成最终的图表。此时需要用到transform功能【add field from calculation】:

ros2与web通信实例

ros2与web通信实例 最近需要进行ros2与web端进行通信操作,目标是ros2发送的消息web端能够显示在界面,并且前端能够发布数据,最终实例如下: 然而网上查的的资料如古月居的: 利用Websocket实现ROS与Web的交互 https:/…

Appilot发布:打造面向DevOps场景的开源AI助手

今日,数澈软件Seal (以下简称“Seal”)宣布推出面向 DevOps 场景的 AI 助手 Appilot,这款产品将充分利用 AI 大语言模型的能力为用户提供变革性的部署和应用管理体验。Seal 此次发布的 Appilot 项目,可以让用户直接输入…

使用 sklearn 进行数学建模的通用模板

前言 无论是本科和研究生都会有的数学建模含金量还是很高的,下面将介绍一下进行数学建模的一些基本操作方法,这里主要是利用sklearn 进行建模,包括前期的一些数据预处理以及一些常用的机器学习模型以及一些简单粗暴的通用建模步骤&#xff0…

论文阅读_大语言模型_Llama2

英文名称: Llama 2: Open Foundation and Fine-Tuned Chat Models 中文名称: Llama 2:开源的基础模型和微调的聊天模型 文章: http://arxiv.org/abs/2307.09288 代码: https://github.com/facebookresearch/llama 作者: Hugo Touvron 日期: 2023-07-19 引用次数: 11…

PHP8的类与对象的基本操作之成员变量-PHP8知识详解

成员变量是指在类中定义的变量。在类中可以声明多个变量,所以对象中可以存在多个成员变量,每个变量将存储不同的对象属性信息。 例如以下定义: public class Goods { 关键字 $name; //类的成员变量 }成员属性必须使用关键词进行修饰&#xf…

淘宝分布式文件存储系统(一) -TFS

淘宝分布式文件存储系统( 一 ) ->>TFS 目录 : 什么是文件系统文件存储的一些概念文件的结构系统读取文件的方式为什么采用大文件结构的原因 文件系统 : 将我们的数据整合成目录或者文件,提供对文件的存取接口,基于文件的权限进行访问,简单的说,文件系统就是对文件进行…

List<HashMap<String,String>>实现自定义字符串排序(key排序、Value排序)

系列文章目录 SpringBootVue3实现登录验证码功能 Java实现发送邮件(定时自动发送邮件) 换个角度使用Redis去解决跨域存取Session问题 Redis缓存穿透、击穿、雪崩问题及解决方法 Spring Cache的使用–快速上手篇 更多该系列文章请查看我的主页哦 文章目录…